cho 5 chữ số 1, 2, 3, 4, 5. từ các chữ số nói trên có thể thành lập được bao nhiêu chữ số hàng trăm không chia hết cho 2, biết rằng mỗi chữ số có mặt 1 lần trong mỗi số
từ các chứ số 1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó chữ số 3 có mặt đúng 3 lần, các chữ số còn lại có mặt không quá 1 lần. Trong các số tự nhiên nói trêntìm xác suất để số được chọn chia hết cho 3
Số chữ số tìm được là \(\dfrac{C^2_5\cdot5!}{3!}=200\)
Số số chia hết cho 3 là \(\dfrac{2\cdot5!}{3!}=40\)
\(\Rightarrow P=\dfrac{40}{200}=\dfrac{1}{5}\)
từ các chứ số 1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó chữ số 3 có mặt đúng 3 lần, các chữ số còn lại có mặt không quá 1 lần. Trong các số tự nhiên nói trêntìm xác suất để số được chọn chia hết cho 3
1. Cho các chữ số 0; 1 ; 7 ; 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau từ các số trên?
2. Cho các chữ số 2; 5; 9; 7. Hỏi lập được bao nhiêu số có 4 chữ số khác nhau chia hết cho 5
3. Có bao nhiêu số có 3 chữ số mà mỗi số có 2 chữ số 6?
4. Cho tích 24 x 24 x 34 x 44 x ….x 114 x 124 có tận cùng bằng chữ số nào?
5. Tích 1 x 2 x3 x 4 x …x 48 x 49. Tích này có tận cùng là bao nhiêu chữ số 0?
mấy bạn ghi kết quả thôi không cần giải chi tiết đâu
2:
\(\overline{abcd}\)
d có 1 cách chọn
a có 3 cách chọn
b có 2 cách chọn
c có 1 cách chọn
=>Có 3*2*1*1=6 cách
1: \(\overline{abc}\)
a có 3 cách
b có 3 cách
c có 2 cách
=>Có 3*3*2=18 cách
Bài 3. Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên trong mỗi trường hợp sau:
b) Số tự nhiên chia hết cho 9 mà mỗi chữ số chỉ xuất hiện một lần
Số chia hết cho 9 mà mỗi số xuất hiện 1 lần.
Ta có: 1+2+3+4+5+6=21
Vậy các số chia hết cho 9 sẽ có tổng các chữ số là 9 hoặc 18
Số có 2 chữ số: 36; 63; 45; 54 => 4 số
Số có 3 chữ số: 126; 621; 162; 612; 216; 261; 234; 243; 342; 324; 432; 423; 135; 153; 351; 315; 513; 531 => 18 số
Số có 4 chữ số: 3456; 3465; 3546; 3564; 3654; 3645 => 6 số x 4 cách đổi = 24 số
Số có 5 chữ số: 12456; 12465; 12564; 12546; 12645; 12654 => Số lượng: 6 x 4 x 5 = 120 số
Tổng thoả mãn: 4+18+24+120= 166(số)
Cho tập A = {3;4;5;6}. Tìm số các số tự nhiên có bốn chữ số được thành lập từ tập A sao cho trong mỗi số tự nhiên đó, hai chữ số 3 và 4 mỗi chữ số có mặt nhiều nhất 2 lần, còn hai chữ số 5 và 6 mỗi chữ số có mặt không quá 1 lần.
A. 24
B. 30
C. 102
D. 360
Chọn C
Ta có thể chia làm bốn trường hợp sau
TH1: Số 5 có mặt một lần, số 6 có mặt một lần.( Bao gồm các khả năng sau: mỗi số có mặt một lần hoặc một số 5, một số 6 hai số 3 hoặc một số 5, một số 6 hai số 4)
Số các số được tạo thành là:
TH2: Số 5 có mặt một lần, số 6 không có mặt.
Số các số được tạo thành là:
TH3: Số 6 có mặt một lần, số 5 không có mặt.
Số các số được tạo thành là:
TH4: Số 5 và số 6 không có mặt.( Số 3 và số 4 mỗi số có mặt đúng hai lần)
Số các số được tạo thành là:
Vậy có thể lập được 102 số thỏa mãn đề bài.
Từ các chữ số 0, 1, 2, 3; 4; 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt mặt đúng một lần?
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
A. 444
B. 480
C. 420
D. 468
Gọi số cần tìm có dạng . Vì chia hết cho 5 suy ra e =0 hoặc 5.
TH1. Với e=0
Nếu a=1; thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn d.
Theo quy tắc nhân có 1.5.4.3=60 số.
Tương tự nếu b=1; c=1 hoặc d=1 ta cũng có 60 số.
Trong trường hợp 1 có tất cả 60.4=240 số cần tìm.
TH2. Với e=5,
Nếu a=1 thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn c. Theo quy tắc nhân có 1.5.4.3=60 số.
Nếu b= 1 thì có 4 cách chon a( a khác 0); 4 cách chọn c và 3 cách chọn d suy ra có 1.4.4.3=48 số
Tương tự với c=1 hoặc d=1 cũng có 48 số
Trong trường hợp 2 có 60+3.48= 204.
Vậy có tất cả 204+240= 444 số cần tìm.
Chọn A.
Cho 6 chữ số : 1 ,2 ,3 ,4 ,5 ,6 .Từ các chữ số đó em có thể lập được bao nhiêu số có 3 chữ số khác nhau mà mỗi số chia hết cho 3 ? Tính tổng tất cả các chữ số của tất cả các số có ba chữ số có thể lập được như vậy .
Cho 6 chữ số 0,1,2,3,4,5. Từ 6 chữ số trên có thể lập được bao nhiêu số, mỗi số có 4 chữ số khác nhau và không chia hết cho 5?
A. 15
B. 22
C. 192
D. 720
Chọn C
Số có bốn chữ số có dạng : a b c d ¯
( a≠0,a,b,c,d∈ E={0,1,2,3,4,5})
Do a b c d ¯ không chia hết cho 5 nên có 4 cách chọn d( là 1,2,3,4)
Chọn a ∈ E\{0,d} nên có 4 cách chọn a
Chọn b ∈ E\{a,d} nên có 4 cách chọn b
Chọn c ∈ E\{a,b,d} nên có 3 cách chọn c
Theo quy tắc nhân, có 4*4*4*3=192 số