cho x và y là hai số thỏa mãn : x ≥ 0, y ≥ 0, 2x + 3y ≤ 6 và 2x + y ≤ 4
tìm GTNN và GTLN của biểu thức K=x2 - 2x - y
1,cho số nguyên tố p(p>3) và 2 sô nguyên dương a,b sao cho p^2 + a^2=b^2. chứng minh a chia hết cho 12 và 2(p+a+1) là số chính phương
2, cho x,y,z >=0 thỏa mãn x^2+y^2+z^2=1. tìm GTLN và GTNN của biểu thức: T= x/(1-yz) + y/(1-zx) + z/(1-xy)
giúp mình với ạ!!
cần gấp
cái này mik chịu, mik mới có lớp 7
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
2, \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)
Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)
=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)
Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)
=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)
Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)
Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)
=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)
Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Cho x,y,z là các số thực thỏa mãn 2x=3y=5z và |x-2y|=5.Tìm GTNN của 3x-2z
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y
1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)
b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
cho x,y,z,t là các số nguyên dương thỏa mãn \(x^2-y^2+t^2=21\) và \(x^2+3y^2+4z^2=101\). Tìm GTNN của biểu thức \(M=x^2+y^2+2z^2+t^2\)
Cho các số thực x, y thỏa mãn x + y = 2 x - 3 + y + 3 . Giá trị nhỏ nhất của biểu thức P = 4 ( x 2 + y 2 ) + 15 x y là:
A. minP = -83
B. minP = -63
C. minP = -80
D. minP = -91
Các cậu giúp mình nhé, mình sắp thi huyện rồi :
Câu 1 : Giá trị nhỏ nhất của biểu thức :
A = -x ^ 2 - 2x - 5 / x ^ 2 + 2x +2 là
Câu 2 : Cho x,y,z khác 0 và x - y - z = 0
Tính giá trị biểu thức :
B = ( 1 - z / x ) ( 1 - x/y) ( 1 + y/2 )
Câu 2 : Tìm x,y,z biết :
x - 1 / 2 = y- 2 / 3 = z - 3 /4 và 2x + 3y -z =50
Câu 3 : Tìm x,y biết :
x / y ^2 = 3 và x/ y =27
cho x>0, y>0 và x+y lớn hơn hoặc bằng 6. tìm GTNN của biểu thức P= 5x+3y+12/x+16/y
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
làm bừa thui,ai tích mình mình tích lại
số dư lớn nhất bé hơn 175 là 174
số nhỏ nhất có 4 chữ số là 1000
Mà 1000:175=5( dư 125)
số đó là:
cho x>0, y>0 và x+y lớn hơn hoặc bằng 6.
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4