Tìm gía trị lớn nhất của biểu thức : \(P=\dfrac{8\left(2x-1\right)}{x^2+2}\)
tìm giá trị lớn nhất của các biểu thức
\(A=5-3\left(2x-1\right)^2\) \(B=\dfrac{1}{2\cdot\left(x-1\right)^2+3}\) \(C=\dfrac{x^2+8}{x^2+2}\) \(D=\dfrac{1}{\sqrt{x}+3}\)
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)
Tìm x để biểu thức sau có gt dương:
\(A=x^2-3x\)
Tìm x để các biểu thức sau có gía trị âm:
\(D=x^2+\dfrac{5}{2}x\\ E=\dfrac{x-3}{x-2}\\ G=\left(2x-1\right)\left(3-2x\right)\)
a: A>0
=>\(x^2-3x>0\)
=>x(x-3)>0
TH1: \(\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\)
=>x>3
TH2: \(\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\)
=>x<0
d: Để D<0 thì \(x^2+\dfrac{5}{2}x< 0\)
=>\(x\left(x+\dfrac{5}{2}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x+\dfrac{5}{2}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x< -\dfrac{5}{2}\end{matrix}\right.\)
=>Loại
Th2: \(\left\{{}\begin{matrix}x< 0\\x+\dfrac{5}{2}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x>-\dfrac{5}{2}\end{matrix}\right.\)
=>\(-\dfrac{5}{2}< x< 0\)
e: ĐKXĐ: x<>2
Để E<0 thì \(\dfrac{x-3}{x-2}< 0\)
TH1: \(\left\{{}\begin{matrix}x-3>=0\\x-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\x< 2\end{matrix}\right.\)
=>Loại
TH2: \(\left\{{}\begin{matrix}x-3< =0\\x-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x>2\end{matrix}\right.\)
=>2<x<=3
g: Để G<0 thì \(\left(2x-1\right)\left(3-2x\right)< 0\)
=>\(\left(2x-1\right)\left(2x-3\right)>0\)
TH1: \(\left\{{}\begin{matrix}2x-1>0\\2x-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{3}{2}\end{matrix}\right.\)
=>\(x>\dfrac{3}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\2x-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)
=>\(x< \dfrac{1}{2}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Câu 1. Cho hai biểu thức A =\(\dfrac{x+x^2}{2-x}\)và B = \(\dfrac{2x}{x+1}\)+\(\dfrac{3}{x-2}\)- \(\dfrac{2x^2+1}{x^2-x-2}\) a) Tính gía trị biểu thức A khi |2x-3|= 1
b) Tìm ĐKXĐ và tính giá trị biểu thức B
c) Tìm số nguyên x lớn nhất để P = A.B đạt giá trị lớn nhất
a: |2x-3|=1
=>2x-3=1 hoặc 2x-3=-1
=>x=1(nhận) hoặc x=2(loại)
KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)
b: ĐKXĐ: x<>-1; x<>2
\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)
Tìm x để biểu thức:
a) A= 0,6 + \(\left|\dfrac{1}{2}-x\right|\) đạt giá trị nhỏ nhất
b) B= \(\dfrac{2}{3}\) - \(\left|2x+\dfrac{2}{3}\right|\) đạt giá trị lớn nhất
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Tìm giá trị lớn nhất (GTNN) của các biểu thức sau:
A= \(\dfrac{4+5\left|1-2x\right|}{7}\)
B= \(\dfrac{x^2+4x-6}{3}\)
C= \(\dfrac{5}{x^2-2x+3}\)
bài 1
cho\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)tìm số nguyên x để A có giá trị là một số nguyên
bài 2
tìm giá trị lớn nhất của các biểu thức sau
A=5-(2x-1)\(^2\) B=\(\dfrac{1}{2\cdot\left(x-1\right)^2+3}\) C=\(\dfrac{x^2+8}{x^2+2}\) D=\(\dfrac{1}{\sqrt{x}+3}\)
bài 3 tìm các giá trị nguyên của x để biểu thức sau có giá trị nhỏ nhất
\(A=\dfrac{1}{x-3}\) B\(=\dfrac{7-x}{x-5}\) C\(=\dfrac{5x-19}{x-4}\)
bài 4
ba số a,b,c khác 0 và a+b+c\(\ne\),thỏa mãn điều kiện \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
tính giá trị biểu thức \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
Tìm giá trị lớn nhất của biểu thức \(A=\dfrac{3+2\left|X+2\right|}{1+\left|X+2\right|}\)
\(A=\dfrac{3+2\left|x+2\right|}{1+\left|x+2\right|}\)
\(=\dfrac{2+2\left|x+2\right|+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)}{1+\left|x+2\right|}+\dfrac{1}{1+\left|x+2\right|}\)
\(=2+\dfrac{1}{1+\left|x+2\right|}\)
Ta có \(\left|x+2\right|\ge0\)
\(\Leftrightarrow1+\left|x+2\right|\ge1\)
\(\Leftrightarrow\dfrac{1+\left|x+2\right|}{1+\left|x+2\right|}\ge\dfrac{1}{1+\left|x+2\right|}\)
\(\Leftrightarrow\dfrac{1}{1+\left|x+2\right|}\le1\)
\(\Leftrightarrow2+\dfrac{1}{1+\left|x+2\right|}\le1+2=3\)
\(\Rightarrow A\le3\)
Dấu \("="\) xảy ra khi \(x+2=0\) \(\Leftrightarrow x=-2\)
Vậy giá trị lớn nhất của biểu thức \(A\) là \(3\)