Cho hình bình hành ABCD, đường chéo lớn AC . Từ C kẻ CE vuông góc với AB, CF vuông góc với AD.
Chứng minh : AB.AE+AD.AF=AC2
Lưu ý đây là đường chéo lớn nhá!
Bài 2 : Cho hình bình hành ABCD, có đường chéo lớn AC. Từ C kẻ CE vuông góc AB, CF vuông góc AD ; BH vuông góc AC. Chứng minh : a) AB.AE = AH.AC b) BC.AF = AC.HC c) AB.AE + AD.AF = AC2 . d) Cho biết CE = 16cm, CF = 20cm, chu vi ABCD = 108cm. Tính diện tích ABCD
Giúp mk vs khó quá
Dựng BG ⊥ AC.
Xét ∆ BGA và ∆ CEA, ta có:
ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘
ˆAA^ chung
Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)
Suy ra: ABAC=AGAEABAC=AGAE
Suy ra: AB.AE = AC.AG (1)
Xét ∆ BGC và ∆ CFA, ta có:
ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘
ˆBCG=ˆCAF;BCG^=CAF^ (so le trong vì AD // BC)
Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)
Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG
Mà BC = AD (tính chất hình bình hành )
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế của đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)
Mà AG+CG=ACAG+CG=AC nên AB.AE+AD.AF=AC2
Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ C, vẽ đường thẳng vuông góc CE với đường thẳng AB, đường vuông góc CF với đường thẳng AD (E, F thuộc phần kéo dài của các cạnh AB và AD), Chứng minh rằng AB.AE + AD.AF = A C 2
Dựng BG ⊥ AC.
Xét ΔBGA và ΔCEA, ta có:
∠ (BGA) = ∠ (CEA) = 90 0
∠ A chung
⇒ △ BGA đồng dạng △ CEA(g.g)
Suy ra:
AB.AE = AC.AG (1)
Xét △ BGC và △ CFA, ta có:
∠ (BGC) = ∠ (CFA) = 90 0
∠ (BCG) = ∠ (CAF) (so le trong vì AD //BC)
△ BGC đồng dạng △ CFA (g.g)
Suy ra: ⇒ BC.AF = AC.CG
Mà BC = AD (tính chất hình bình hành)
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
AB.AE + AD.AF= AC(AG + CG)
Mà AG + CG = AC nên AB.AE + AD.AF = A C 2
Cho hình bình hành ABCD có Ac là đường chéo lớn. Từ C kẻ CE vuông góc với đường thẳng Ab (E\(\in\)AB) và kẻ CF vuông góc với đường thẳng AD (F\(\in\)AD). Chứng minh \(AB.AE+AD.AF=AC^2\)
Từ D kẻ DH vuông góc với AC (H thuộc AC)
Xét \(\Delta AHD\)và \(\Delta AFC\:\)có:
\(\widehat{AHD}=\widehat{AFC\:}=90^0\)
\(\widehat{HAD}\) chung
suy ra: \(\Delta AHD~\Delta AFC\:\)
\(\Rightarrow\)\(\frac{AH}{AF}=\frac{AD}{AC}\)
\(\Rightarrow\)\(AD.AF=AH.AC\) (1)
Xét \(\Delta AEC\) và \(\Delta CHD\) có:
\(\widehat{AEC}=\widehat{CHD}=90^0\)
\(\widehat{EAC}=\widehat{HCD}\) (slt do ABCD là hình bình hành nên AB//CD)
suy ra: \(\Delta AEC~\Delta CHD\)
\(\Rightarrow\)\(\frac{AE}{CH}=\frac{AC}{CD}\)
\(\Rightarrow\)\(AE.CD=CH.AC\)
mà \(CD=AB\) (do ABCD là hình bình hành)
\(\Rightarrow\)\(AB.AE=CH.AC\)
Lấy (1) + (2) theo vế ta được:
\(AD.AF+AB.AE=AH.AC+HC.AC=AC^2\) (đpcm)
Dựng BG ⊥ AC.
Xét ΔBGA và ΔCEA, ta có:
∠ (BGA) = ∠ (CEA) = 90 0
∠ A chung
⇒ △ BGA đồng dạng △ CEA(g.g)
Suy ra:
AB.AE = AC.AG (1)
Xét △ BGC và △ CFA, ta có:
∠ (BGC) = ∠ (CFA) = 90 0
∠ (BCG) = ∠ (CAF) (so le trong vì AD //BC)
△ BGC đồng dạng △ CFA (g.g)
Suy ra: ⇒ BC.AF = AC.CG
Mà BC = AD (tính chất hình bình hành)
Suy ra: AD.AF = AC.CG (2)
Cộng từng vế đẳng thức (1) và (2) ta có:
AB.AE + AD.AF = AC.AG + AC.CG
Cho hình bình hành ABCD. Từ C kẻ CE vuông góc với AB, kẻ CF vuông góc với AD. Giả sử AC > BD. Chứng minh rằng: AB.AE + AD.AF = AC2.
cho hình bình hành ABCD có đường chéo AC là lớn nhất .từ C hạ các đường vuông góc CE và CF lần lượt xuống các tia AB,AD .chứng minh rằng AB.AE+AD.AF=AC2
Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath
Em xem link bài làm nhé!
cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E,F lần lượt là chân đường vg góc kẻ từ C đến các đg thẳng AB,AD. G là chân đường vg góc kẻ từB đến AC Chứng minh rằng:
a)tam giác BCG ∼tam giác CAF
b) AB.AE+AD.AF=AC2
Cho hình bình hành ABCD với AC là đường chéo lớn. Kẻ CE vuông góc AB; CF vuông góc AD; BH vuông góc AC.
Chứng minh : a) t.giác AEC đồng dạng t.giác AHB.
b) AD.AF = CA.CH.
c) AB.AE + AD.AF= AC^2
Tgiac AEC và tgiac AHB có góc BAC chung, góc aEC= AHB
=> Tgiac AEC~tgiac AHB(gg)
Tgiac AFC và tgiac CHB có BHC=AFC=90•
Góc FAC=HCB do AD//BC
=> Tg AFC ~tg CHB(gg)
=> BC/CH=CA/AF
Mà BC=AD( ABCD là hbh)
=> AD/CH=CA/AF=> AD.AF=CH.AC
Tg AEC~tg AHB=> AB/AC= AH/AE=> AB. AE=AC.AH
Ta có AD.AF=Ca.CH( cm ý b)
Cộng vế với vế ta đc
AB.AE+AD.AF=AC.AH+AC.CH=AC(AH+CH)=AC2
Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ C, vẽ đường vuông góc CE với đường thẳng AB, đường vuông góc CF với đường thẳng AD (E, F thuộc phần kéo dài của các cạnh AB và AD).
Chứng minh rằng :
\(AB.AE+AD.AF=AC^2\)
cho hình bình hành ABCD có AC > BD . Vẽ CE vuông góc với AB tại E và CF vuông góc với AD tại F . Biết đường chéo AC = a , hãy tính AB.AE + AD.AF theo a .
Cho AC là đường chéo lớn của hình bình hành ABCD. Từ C kẻ CE vuông góc với AB, kẻ CF vuông góc với AD (E,F thuộc AB và AD). Chứng minh rằng: AB*AE+AD*AF=AC2