Bài 1: Cho biểu thức P= \(\dfrac{x^4-x}{x^2+x+1}-\dfrac{2x^2+x}{x}+\dfrac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P.
b) Tìm GTNN của P.
c) Tìm các giá trị dương của x để biểu thức Q=\(\dfrac{2x}{P}\) nhận giá trị là số nguyên.
Bài 1: Cho biểu thức: P =\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)
a) Tìm điều kiện của x để biểu thức P xác định.
b) Rút gọn biểu thức P.
c) Với giá trị nào của x thì P = 2.
d) Tìm các giá trị nguyên của x để P nhận giá trị nguyên.
Mình phải đi ăn nên chiều mình làm nốt câu d nhé
a) Điều kiện để P được xác định là: \(x\ne1;x\ne-1\)
b) \(P=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}x-\dfrac{x^2-1}{x^2+2x+1}\)
\(P=\left(\dfrac{\left(x+1\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\right):\dfrac{2x}{5x-5}x-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)
\(P=0:\dfrac{2x}{5x-5}x-\dfrac{x-1}{x+1}\)
\(P=-\dfrac{x-1}{x+1}\)
c) Theo đề ta có:
\(P=2\)
\(\Leftrightarrow-\dfrac{x-1}{x+1}=2\)
\(\Leftrightarrow-\left(x-1\right)=2x+2\)
\(\Leftrightarrow-x-2x=2-1\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
d) \(P=-\dfrac{x-1}{x+1}\) nguyên khi:
\(\Leftrightarrow x-1⋮-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)-2⋮-\left(x+1\right)\)
\(\Leftrightarrow-2⋮-\left(x+1\right)\)
\(\Leftrightarrow2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)\)
Vậy \(P\) nguyên khi \(x\in\left\{-2;0;-3;1\right\}\)
Cho biểu thức P=\(\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)
a) Rút gọn P
b) Tính giá trị của P biết \(x=\dfrac{1}{4}\)
c) Tìm GTNN của biểu thức \(\dfrac{1}{P}\)
giúp mk vs!!!!
ĐKXĐ: \(x\notin\left\{-1;-\dfrac{1}{2}\right\}\)
a) Ta có: \(P=\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)
\(=\left(\dfrac{2x}{\left(x+1\right)\left(x^2+1\right)}+\dfrac{x^2+1}{\left(x^2+1\right)\left(x+1\right)}\right):\left(\dfrac{x+1+x}{x+1}\right)\)
\(=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x^2+1\right)}:\dfrac{2x+1}{x+1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x+1}{2x+1}\)
\(=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\)
b) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ
nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(P=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\), ta được:
\(P=\left[\left(\dfrac{1}{4}\right)^2+2\cdot\dfrac{1}{4}+1\right]:\left[\left(2\cdot\dfrac{1}{4}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)
\(=\left(\dfrac{1}{16}+\dfrac{1}{2}+1\right):\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)
\(=\dfrac{25}{16}:\dfrac{51}{32}=\dfrac{25}{16}\cdot\dfrac{32}{51}=\dfrac{50}{51}\)
Vậy: Khi \(x=\dfrac{1}{4}\) thì \(P=\dfrac{50}{51}\)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
Cho biểu thứ :\(P:\left(\dfrac{x-1}{x-3}+\dfrac{2}{x-3}+\dfrac{x^2+3}{9-x^2}\right):\left(\dfrac{2x-1}{2x+1-1}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết \(\left|x+1\right|=\dfrac{1}{2}\)
c) Tìm x để \(P=\dfrac{x}{2}\)
d) Tìm giá trị nguyen của x để P có giá trị nguyên
Cho biểu thức A =
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
cho P=\(\left(\dfrac{x+2}{2x-4}+\dfrac{x-2}{2x+4}+\dfrac{-8}{x^2-4}\right):\dfrac{4}{x-2}\)
A) Tìm điều kiện của x để P xác định
B) Rút gọn biểu thức P
C) tính giá trị của biểu thức P khi x=\(-1\dfrac{1}{3}\)
Cho A = \(\left(\dfrac{2x}{x-2}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A biết: \(\left|2x-1\right|=3\)
c) Tìm x để A > 0
d) Tìm x để \(B=\dfrac{2}{x+1}\)
Bài 3. Cho biểu thức: \(P=\dfrac{x^2+2x}{2x+20}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm giá trị của x để P = 0; P = \(\dfrac{1}{4}\)
d) Tìm giá trị của x để P > 0; P < 0
a) ĐKXĐ: \(x\ne-10;x\ne0;x\ne-5\)
b) \(P=\dfrac{x^2+2x}{2x+20}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+2x}{2\left(x+10\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)\left(x+5\right)}{2x\left(x+10\right)\left(x+5\right)}+\dfrac{2\left(x-5\right)\left(x+10\right)}{2x\left(x+10\right)\left(x+5\right)}+\dfrac{\left(50-5x\right)\left(x+10\right)}{2x\left(x+5\right)\left(x+10\right)}\)
\(=\dfrac{x^4+7x^3+10x^2+2x^2+10x-100+500-5x^2}{2x\left(x+10\right)\left(x+5\right)}\)
\(=\dfrac{x^4+7x^3+7x^2+10x+400}{2x\left(x+10\right)\left(x+5\right)}\)
c) \(P=0\Rightarrow x^4+7x^3+7x^2+10x+400=0\Leftrightarrow...\)
Số xấu thì câu c, d làm cũng như không. Bạn xem lại đề.
Cho biểu thức \(P=\left(\dfrac{\sqrt{x-2}}{x-1}-\dfrac{\sqrt{x+2}}{x+2\sqrt{x+1}}\right):\left(\dfrac{2}{x^2-2x+1}\right)\) với \(x\ge0;x\ne1\)
`a)` Rút gọn `P`
`b)` Tìm các giá trị của `x` để `P>0`
`c)` Tính giá trị của `P` khi \(x=7-4\)\(\sqrt{3}\)
`d)` Tìm GTLN của `P` và giá trị tương ứng của `x`
a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)
=>\(\sqrt{x}< 1\)
=>\(0< =x< 1\)
c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:
\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)
\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}-1}{2}\)
P = \(\left(1-\dfrac{x^2+2x+1}{x^3+1}\right)\)\(:\dfrac{x^2+2x+1}{x^3+1}\)
a)Tìm điều kiện của x để biểu thức P xác định
b)Rút gọn biểu thức P
c)Với giá trị nào của x thì P = 2
d)Tìm các giá trị nguyên của x để P nhận giá trị nguyên
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)