Bài 3: Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC).Kẻ DE vuông góc với BC (E thuộc BC ). Chứng minh DA=DE
Cho tam giác ABC vuông tại a, đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). Chứng minh:
a)Tam giác ABD=tam giác EBD;
b)so sánh DA và DB;
c)BD vuông góc với AE;
d)AD<DC;
e)Kẻ CK vuông góc với BD(K thuộc BD). Chứng minh ED,CK,AB cùng đi qua một điểm.
Cho tam giác ABC vuông tại A, kẻ đường phân giác BD (De AC) và kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: DA = DE b) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm E, D, F thẳng hàng?
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
Cho ABC có AB=3;AC=4;BC=5.
a) Chứng minh tam giác ABC vuông tại A.
b) Vẽ phân giác BD (D thuộc AC),từ D vẽ DE vuông góc với BC (E thuộc BC).Chứng minh DA=DE.
c) Kẻ ED cắt AB tại F.Chứng minh chứng minh tam giác ADF= tam giác EDC rồi suy ra DF>DE
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm, đường phân giác BD(D thuộc AC). Qua D, kẻ DE vuông góc với BC (E thuộc BC).
a/ Tính BC
b/ Chứng minh: tam giác ABD= tam giác EBD
c/ Chứng minh: AB+AC>DE+BC
tổng đài tư vấn có bằng chứng ko
ko có thì đừng nói
cho tam giác abc có ab=3 ac=4 bc=5
a, chứng minh tam giác abc vuông tại a
b, vẽ phân giác bd (d thuộc ac ) , từ d vẽ de vuông góc với bc (e thuộc bc ) chứng minh da=de
c,ed cắt ab tại f . chứng minh tam giác adf=edc rồi suy ra df>de
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
Bài 3 (3 điểm). Cho tam giác ABC cân tại A có đường phân giác AD (D thuộc BC).
a) Chứng minh tam giác ABD = tam giác ACD
b) Kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh DE = DF
c) Chứng minh EF // BC;
d) Gọi điểm M là trung điểm của đoạn thẳng AF. Đường thẳng AD cắt đường thẳng EM và đường thẳng EF lần lượt tại H và O. Tim số đo góc BAC để OD =2.HO
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Giúp mình ý d với ạ
Bài 3 (3 điểm). Cho tam giác ABC cân tại A có đường phân giác AD (D thuộc BC).
a) Chứng minh tam giác ABD = tam giác ACD
b) Kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh DE = DF
c) Chứng minh EF // BC;
d) Gọi điểm M là trung điểm của đoạn thẳng AF. Đường thẳng AD cắt đường thẳng EM và đường thẳng EF lần lượt tại H và O. Tim số đo góc BAC để OD =2.HO
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Cho tam giác ABC vuông tại A . Phân giác BD , D thuộc AC . Kẻ DE vuông góc BC , E thuộc BC .
a) Chứng minh tam giác ABD = tam giác EBD
b) Kẻ AH vuông góc BC tại H , H thuộc BC . AH cắt BD tại I . Chứng minh AH // DE và tam giác AID cân
c) Chứng minh AE là phân giác của góc HAC
Cho tam giác ABC có AB = 6cm ; AC = 8cm ; BC = 10cm
a) Chứng minh tam giác ABC vuông tại A
b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ D vẽ DE vuông góc với BC (E thuộc BC) Chứng minh DA =DE
c) Kéo dài ED và BA cắt nhau tại F. Chứng minh DF>DE
d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC
ta có : BC2 = 102 = 100
AC2 +AB2 =62 + 82 =36 +64 = 100
BC2 =AC2 + AB2
suy ra tam giác ABC vuông tại A ( định lý pytago đảo )
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b, Xét Δ ABD và Δ EBD, có :
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))
\(\widehat{BAD}=\widehat{BED}=90^o\)
BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)
=> AB = AE
Xét Δ ABE, có :
AB = AE (cmt)
=> Δ ABE cân tại E
Ta có :
Δ ABE cân tại E
BD là tia phân giác của \(\widehat{ABE}\))
=> BD là đường trung trực của AE
c, Ta có : Δ ABD = Δ EBD (cmt)
=> AD = ED
Trong Δ CED, cạnh huyền DC là cạnh lớn nhất
=> ED < DC
Mà AD = ED (cmt)
=> AD < DC