Giả sử \(x=\dfrac{a}{m};y=\dfrac{b}{m}\left(a,b,m\in Z,m>0\right)\) và \(x< y\).
Hãy chứng tỏ rằng nếu chọn \(z=\dfrac{a+b}{2m}\) thì ta có \(x< z< y\).
Giả sử x = \(\dfrac{a}{m}\); y = \(\dfrac{b}{m}\)(a;b;m ϵ Z, m ≠ 0 và x < y). Hãy chứng tỏ rằng nếu chọn z = \(\dfrac{a+b}{2m}\) thì x < y < z.
Giả sử x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)(a, b, m \(\in\) Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\dfrac{a+b}{2m}\) thì ta có x < z < y
Hướng dẫn: Sử dụng tính chất: Nếu a, b, c \(\in\) Z và a < b thì a + c < b + c
Giúp mk nốt câu này nhé
Giả sử: a,b >0 và m,n ∈ Z*
Tìm min của: \(P=ax^m+b\dfrac{1}{x^n}
\) với x>0
Lời giải:
Áp dụng BĐT Cô - si:
\(P=ax^m+\frac{b}{x^n}=\frac{a}{n}x^m+\frac{a}{n}x^m+...+\frac{a}{n}x^m+\frac{b}{mx^n}+...+\frac{b}{mx^n}\)
\(=(m+n)\sqrt[m+n]{(\frac{a}{n})^n.x^{mn}.(\frac{b}{m})^m.\frac{1}{x^{mn}}}\)
\(=(m+n)\sqrt[m+n]{\frac{a^nb^m}{n^n.m^m}}\)
Giả sử\(x=\dfrac{a}{m},y=\dfrac{b}{m}\left(a;b;m\in Z,m>0\right)\) và x < y. Hãy chứng tỏ rằng nếu chọn z=\(\dfrac{a+b}{2m}\) thì ta có x < z <y
Có x=a/m; y=b/m và x<y nên a/m<b/m ⇒a<b
Giả sử z>x là đúng thì\(\dfrac{a+b}{2m}>\dfrac{a}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{a}{m}>0\\ \Leftrightarrow\dfrac{a+b-2a}{2m}>0\Leftrightarrow\dfrac{b-a}{2m}>0\\ m\text{à}b>a;m>0n\text{ê}nz>xl\text{à}\text{đ}\text{úng (1)}\)Giả sử z<y là đúng thì
\(\dfrac{a+b}{2m}< \dfrac{b}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{b}{m}< 0\\ \Leftrightarrow\dfrac{a+b-2b}{2m}< 0\Leftrightarrow\dfrac{a-b}{2m}< 0\\ m\text{à}a< b;m>0n\text{ê}nz< yl\text{à}\text{đ}\text{úng (2)}\)
Từ (1)và(2) suy ra đpcm
Giả sử \(x=\dfrac{a}{m}\) ,\(y=\dfrac{b}{m}\) (a,b,c thuộc Z, m >0)và x < y.Hãy chứng tỏ nếu chọn \(z=\dfrac{a+b}{2m}\) thì x < z < y
Ta có: \(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\left(m>0\right)\)
\(z=\dfrac{a+b}{2m}>\dfrac{a+a}{2m}=\dfrac{2a}{2m}=\dfrac{a}{m}=x\)
\(z=\dfrac{a+b}{2m}< \dfrac{b+b}{2m}=\dfrac{2b}{2m}=\dfrac{b}{m}=y\)
\(\Rightarrow x< z< y\)
Giả sử x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\) (a, b, m thuộc Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\dfrac{2a+1}{2m}\) thì ta có x < z < y.
Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)
Từ (1), Suy ra:
\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)
\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)
Từ (2);(3), ta có:
\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)
\(\Leftrightarrow x< z< y\left(đpcm\right)\)
Giả sử 1 nguyên hàm của hàm số f(x)= \(\dfrac{x^2}{\sqrt{1-x^3}}+\dfrac{1}{\sqrt{x}.\left(1+\sqrt{x}\right)^2}\) có dạng : \(A\sqrt{1-x^3}+\dfrac{B}{1+\sqrt{x}}\) tính A+B=?
Cách làm đơn giản nhất:
Do \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow F'\left(x\right)=f\left(x\right)\)
Ta có: \(F\left(x\right)=A\sqrt{1-x^3}+\dfrac{B}{1+\sqrt{x}}\)
\(\Rightarrow F'\left(x\right)=\dfrac{A\left(-3x^2\right)}{2\sqrt{1-x^3}}+B.\left(-\dfrac{\dfrac{1}{2\sqrt{x}}}{\left(1+\sqrt{x}\right)^2}\right)\)
\(\Rightarrow F'\left(x\right)=\dfrac{-3A}{2}.\dfrac{x^2}{\sqrt{1-x^3}}-\dfrac{B}{2}.\dfrac{1}{\sqrt{x}\left(1+\sqrt{x}\right)^2}=f\left(x\right)\)
Đồng nhất hệ số ta được:
\(\left\{{}\begin{matrix}\dfrac{-3A}{2}=1\\\dfrac{-B}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\dfrac{-2}{3}\\B=-2\end{matrix}\right.\) \(\Rightarrow A+B=-\dfrac{8}{3}\)
Giả sử \(x=\dfrac{a}{m},y=\dfrac{b}{m}\left(a,b,m\in Z,m\ne0\right)\) và x < y . Hãy chứng tỏ rằng nếu chọn \(z=\dfrac{a+b}{2m}\) thì ta có x < z < y.
Hướng dẫn : Sử dụng tính chất : Nếu \(a,b,c\in Z\) và a < b thì a + c < b + c .
nếu \(x=\dfrac{2}{2}\)và\(y=\dfrac{3}{2}\)
\(m=\dfrac{2+3}{2x2}\)\(=\dfrac{5}{4}\)
\(x=\dfrac{2}{2}\)\(=\dfrac{2x2}{2x2}\)\(=\dfrac{4}{4}\) ; \(y=\dfrac{3}{2}\)\(=\dfrac{3x2}{2x2}\)\(=\dfrac{6}{4}\)
vậy \(\dfrac{4}{4}\)\(< \dfrac{5}{4}\)\(< \dfrac{6}{4}\)
\(\left\{{}\begin{matrix}x=\dfrac{a}{m}\\y=\dfrac{b}{m}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2a}{2m}\\y=\dfrac{2b}{2m}\end{matrix}\right.\)
\(x< y\Leftrightarrow a< b\)
\(\Leftrightarrow a+a< a+b\Leftrightarrow2a< a+b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}\)
Nên:\(x< z\)
\(\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\Leftrightarrow\dfrac{a+b}{2m}< \dfrac{2b}{2m}\)
Nên \(z< y\)
Vậy \(x< z< y\)
Cho biểu thức : A= \(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a) rút gọn A
b ) giả sử x>1 cmr A-|A| =0
c) Tìm Min A
ĐK: \(x>0\).
a)\(A=\dfrac{x^2+x+1}{x-\sqrt{x}+1}-2\sqrt{x}-1\)
\(A=\dfrac{x^2+x+1-\left(2\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{-2x\sqrt{x}+x^2+3x-2\sqrt{x}-x+\sqrt{x}}{x-\sqrt{x}+1}\)
\(=\dfrac{-2x\sqrt{x}+x^2+2x-\sqrt{x}}{x-\sqrt{x}+1}\)
b)Với x>1 thì A>0 nên |A|=A do đó A-|A|=0.