Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn vở
Xem chi tiết
Phùng Thị Yến Nhi
Xem chi tiết
Nguyễn Thị Thùy Trang
6 tháng 1 2022 lúc 20:54

Fe3O4 + 3H2 -> 3Fe + 4H2O

  232                  3\(\times\)56              (M)

\(mFe3O4=1.5\times80\%=1.2\) tấn

\(mFe=\dfrac{1.2\times3\times56}{232}=0.87\) tấn

Chọn D

Aa Minh
Xem chi tiết
Ngann555
Xem chi tiết
Xuân Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 8:28

6:

=0,25(2+3+5)*1-1=2,5-1=1,5

Thảo Nguyễn Thanh
Xem chi tiết
Vi Thái Dương
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 18:47

a.

Công thức góc cơ bản: \(cos\left(a+k\pi\right)=\pm cosa\) ; \(sin\left(a+k2\pi\right)=sina\) ; \(cos\left(a+\dfrac{\pi}{2}\right)=-sina\)

Do đó pt tương đương:

\(2cosx+\dfrac{1}{3}cos^2x=\dfrac{8}{3}+sin2x-3sinx+\dfrac{1}{3}sin^2x\)

\(\Leftrightarrow6cosx+1-sin^2x=8+3sin2x-9sinx+sin^2x\)

\(\Leftrightarrow2sin^2x-9sinx+7+6sinx.cosx-6cosx=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sinx-7\right)+6cosx\left(sinx-1\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+6cosx-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\\2sinx+6cosx=7\left(1\right)\end{matrix}\right.\)

Xét (1), ta có \(2^2+6^2=40< 7^2\) nên (1) vô nghiệm

Vậy họ nghiệm của pt là \(x=\dfrac{\pi}{2}+k2\pi\)

Nguyễn Việt Lâm
2 tháng 8 2021 lúc 18:59

b.

Ta có:

\(tan^2x\left(1-sin^3x\right)+cos^3x-1=0\)

\(\Leftrightarrow\dfrac{\left(1-cos^2x\right)\left(1-sin^3x\right)}{\left(1-sin^2x\right)}-\left(1-cos^3x\right)=0\)

\(\Leftrightarrow\dfrac{\left(1-cosx\right)\left(1+cosx\right)\left(1+sinx+sin^2x\right)}{1+sinx}-\left(1-cosx\right)\left(1+cosx+cos^2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Rightarrow x=k2\pi\\\dfrac{\left(1+cosx\right)\left(1+sinx+sin^2x\right)}{1+sinx}=1+cosx+cos^2x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left(1+cosx\right)\left(1+sinx+sin^2x\right)=\left(1+sinx\right)\left(1+cosx+cos^2x\right)\)

\(\Leftrightarrow sin^2x+sin^2x.cosx=cos^2x+cos^2x.sinx\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\Rightarrow x=\dfrac{\pi}{4}+k\pi\\sinx+cosx+sinx.cosx=0\left(2\right)\end{matrix}\right.\)

Xét (2), đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(sinx.cosx=\dfrac{t^2-1}{2}\)

Pt (2) trở thành:

\(t+\dfrac{t^2-1}{2}=0\Leftrightarrow t^2+2t-1=0\Rightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Rightarrow...\)

Trần Quỳnh Trâm
Xem chi tiết
ILoveMath
31 tháng 7 2021 lúc 17:10

câu 1 là 2 cạnh góc vuông hay 1 cạnh góc vuông và cạnh huyền thế

câu 2 AC là cạnh góc vuông hay cạnh huyền 

꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
31 tháng 7 2021 lúc 17:18

1. Xét \(\Delta\)ABC vuông tại A, theo tỉ số lượng giác ta có

\(\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}\Rightarrow B=53^O\\ C=A-B=90^o-53^o=37^o\\ AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\)

2.  Xét \(\Delta\)ABC vuông tại A, theo tỉ số lượng giác ta có

\(\sin C=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{\sin C}=\dfrac{5}{sin30}=10\\ AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-5^2}=5\sqrt{3}\\ B=A-C=90^o-30^o=60^o\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 22:16

2) Ta có:ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔBAC vuông tại A có 

\(AC=AB\cdot\tan60^0\)

\(=5\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+\left(5\sqrt{3}\right)^2=100\)

hay BC=10(cm)