Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dinh huong
Xem chi tiết
Bla bla bla
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 7:54

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

Thu Thủy
Xem chi tiết
Ngô Thanh Sang
8 tháng 7 2017 lúc 17:03

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ta được

\(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{2b}\ge\dfrac{9}{2\left(a+2b\right)}\)

\(\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge\dfrac{9}{2\left(b+2c\right)}\)

\(\dfrac{1}{2c}+\dfrac{1}{2a}+\dfrac{1}{2a}\ge\dfrac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế

\(\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9}{2}\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

Dấu " = " xảy ra khi a = b = c ( a,b,c > 0 )

dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
Lương Đại
Xem chi tiết
dinh huong
Xem chi tiết