Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anh ngoc
Xem chi tiết
Nguyễn Trọng Chiến
23 tháng 2 2021 lúc 21:41

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)

Nguyễn Phương Chi
Xem chi tiết
Edogawa Conan
6 tháng 9 2021 lúc 18:03

Ta có: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)

    \(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

    \(=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

Lấp La Lấp Lánh
6 tháng 9 2021 lúc 18:03

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)

......

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

dâu cute
Xem chi tiết
dâu cute
11 tháng 4 2022 lúc 8:24

giúp mk với ;-;"

☞Tᖇì  ᑎGâᗰ ☜
11 tháng 4 2022 lúc 8:33

1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100

A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100

=1/3 - 1/100 < 1/3

Monkey D Luffy
Xem chi tiết
O O O
Xem chi tiết
Ngô Tấn Đạt
26 tháng 12 2017 lúc 15:50

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\\ =\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\)

Kirigaya Kazuto
Xem chi tiết
Phương Trâm
2 tháng 3 2017 lúc 10:40

Giải:

Ta có:

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)

Đặt \(A=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(A=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{4}-\dfrac{1}{100}\)

\(A=\dfrac{6}{25}\)

\(\dfrac{1}{6}< \dfrac{6}{25}< \dfrac{1}{4}\)

Ta lại có \(A< \dfrac{6}{25}\)

Vậy \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)

Phạm Tùng Lâm
16 tháng 4 2017 lúc 22:02

1/5^2< 1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
..
1/99^2<1/98.99=1/98-1/99
1/100^2<1/99.100=1/99-1/100
Cộng vế theo vế, đơn giản:

=> 1/5^2+1/6^2+...+1/100^2< 1/4 -1/100<1/4

**
1/5^2> 1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
..
1/99^2>1/99.100=1/99-1/100
1/100^2>1/100.101=1/100-1/101

Cộng vế theo vế, đơn giản:
=> 1/5^2+1/6^2+...+1/100^2>1/5 -1/101=96/505>1/6

Vậy:
1/6<1/5^2+1/6^2+...+1/100^2<1/4

Trần Bảo Hân
Xem chi tiết
Nguyễn Chơn Nhân
21 tháng 9 2018 lúc 16:13

1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4

ta có:

(+)1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+...+1/99.100
=1/4-1/5+1/5-...+1/99-1/100

=1/4-1/100<1/4

=>1/5^2+1/6^2+1/7^2+...+1/100^2<1/4

(+)1/5^2+1/6^2+1/7^2+...+1/100^2>1/5.6+...+1/99.100

=1/5-1/6+1/6-...+1/99-1/100

=1/5-1/100>1/6

=>1/5^2+1/6^2+1/7^2+...+1/100^2

Ngô Thành Chung
Xem chi tiết
Ngô Tấn Đạt
10 tháng 2 2018 lúc 19:21

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+....+\dfrac{1}{100^2}\\ >\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\ =\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\\ =\dfrac{96}{505}\\ >\dfrac{1}{6}\)

\(\dfrac{1}{5^2}+...+\dfrac{1}{100^2}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+....+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

Nguyễn ngọc Khế Xanh
Xem chi tiết
Trên con đường thành côn...
25 tháng 7 2021 lúc 18:43

undefined