Cho a,b,c>0. CMR:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)>=a+b+c
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)
\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)
\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
1, Cho x; y; z ≠0 và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)+ \(\dfrac{1}{z}\)=\(\dfrac{2}{2x+y+2z}\). Cmr: (2x+y)(y+2z)(z+x)= 0
2, Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Cmr: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Gấp ạ, ai giúp mình với!!!!
2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)
1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).
CM:....
Đặt 2x = x', 2z = z'.
Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)
\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)
\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)
Cho a,b,c>0. CMR
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\)
Áp dụng bđt Cô-si:
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2}{b+c}\cdot\dfrac{\left(b+c\right)}{4}}=2\sqrt{\dfrac{a^2}{4}}=a\)
Chứng minh tương tự :
\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b;\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{1}{4}\left(2a+2b+2c\right)\ge a+b+c\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{2}\) Dấu= xảy ra \(\Leftrightarrow a=b=c\)
cho a,b,c>0.CMR
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{b\left(a^2+c^2\right)+a\left(b^2+c^2\right)}\le\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(b^2+c^2\right)}\)
Tương tự:
\(\dfrac{b+c}{bc+a^2}\le\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}\) ; \(\dfrac{c+a}{ca+b^2}\le\dfrac{c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}\)
Cộng vế:
\(VT\le\dfrac{1}{a}\left(\dfrac{b^2}{b^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)+\dfrac{1}{b}\left(\dfrac{a^2}{a^2+c^2}+\dfrac{c^2}{a^2+c^2}\right)+\dfrac{1}{c}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{b^2}{a^2+b^2}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a,b,c > 0 và \(a^2+b^2+c^2+abc\ge4\)
CMR: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge\dfrac{a}{\sqrt{2-a}}+\dfrac{b}{\sqrt{2-b}}+\dfrac{c}{\sqrt{2-c}}\)
1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Cho a,b,c >0. CMR: \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Cho a,b,c>0. CMR
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
Áp dụng bđt Cô-si vào các số dương a,b,c:
\(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2}{b}\cdot b}=2\sqrt{a^2}=2a\Rightarrow\dfrac{a^2}{b}\ge2a-b\)
Chứng minh tương tự ta được:
\(\dfrac{b^2}{c}\ge2b-c;\dfrac{c^2}{a}\ge2c-a\)
\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge2a+2b+2c-a-b-c=a+b+c\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Cho a,b,c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\).
Ta có: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)