Cho A = 1 + 2 + 22 + .... + 22007 + 22008. Tìm số dư khi chia A cho 7
Cho A = 1 + 2 + 2 2 + . . . + 2 2007 . Chứng minh: A = 2 2008 - 1
Cho A = 1 + 2 + 2 2 + . . . + 2 2007 . Chứng minh: A = 2 2008 - 1
A = 1 + 2 + 2 2 + . . . + 2 2007
2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008
A = 2A - A = ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) = 2 2008 - 1
Vậy A = 2 2008 - 1
Cho A = 1 + 2 + 2 2 + . . . + 2 2009 + 2 2010 . Tìm số dư khi chia A cho 7
Ta có: A = 1 + 2 + 2 2 + . . . + 2 2009 + 2 2010
= 1 + 2 ( 1 + 2 + 2 2 ) + ... + 2 2008 ( 1 + 2 + 2 2 )
= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )
= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... + 2 2008 )
Mà 7 ( 2 + ... + 2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.
Cho A = 1 + 2 + 2 2 + ... + 2 2009 + 2 2010 . Tìm số dư khi chia A cho 7.
Ta có: A = 1 + 2 + 2 2 + 2 3 + ... + 2 2008 + 2 2009 + 2 2010
= 1 + 2 ( 1 + 2 + 22 ) + ... + 2 2008 ( 1 + 2 + 22 )
= 1 + 2 ( 1 + 2 + 4 ) + ... + 2 2008 ( 1 + 2 + 4 )
= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... + 2 2008 )
Mà 7 ( 2 + ... + 2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.
1. Viết số 1995^1995 thành tổng của các số tự nhiên. Tổng các lập phương đó chia cho 6 thì dư bao nhiêu ?
2. Tìm 3 chữ số tận cùng của 2^100 viết trong hệ thập phân
3. Tìm số dư trong phép chia cái số sau cho 7
a. 22^22 + 55^55
b. 3^1993
c. 1992^1993 + 1994^1995
d. 3^2^1930
4. Tìm số dư khi chia:
a. 2^1994 cho 7
b. 3^1998 + 5^1998 cho 13
c.A= 1^3 + 2^3 + 3^3 + ... + 99^3 chia cho B= 1 + 2 + 3 + ... + 99
1.
Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)
Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)
\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)
Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp
\(\Rightarrow S\) chia 6 dư a
Mà \(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)
Vậy S chia 6 dư 3
2.
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)
Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876
Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8
=> Ba CTSC là 376
3.
\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)
\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3
\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3
\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4
4.
\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4
\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)
\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)
CM bằng quy nạp (có trên mạng)
1.Số tự nhiên a chia 18 dư 10,chia 7 dư 6.Tìm số dư trong phép chia a cho 42.
2.Tìm số tự nhiên a biết 572 chia a dư 22, 241 chia a dư 41.
cho A=1+2+22+23+.....+241
a) Thu gọn tổng A
b) chứng tỏ rằng:a chia hết cho 3,7
c)tìm số dư của a khi chia cho 5
a: \(A=1+2+2^2+...+2^{41}\)
=>\(2A=2+2^2+2^3+...+2^{42}\)
=>\(2A-A=2^{42}-1\)
=>\(A=2^{42}-1\)
b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{40}\right)⋮3\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)
\(=7\left(1+2^3+...+2^{39}\right)⋮7\)
a. Tìm số tự nhiên nhỏ nhất khác 5 khi chia số đó cho 70 , 140 , 350 , 700 đều dư 5
b. Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 1 chia cho 5 dư 3 và chia cho 7 dư 5
c. Tìm số tự nhiên nhỏ nhất khi chia cho 5 dư 1 , chia cho 7 dư 5
d. Tìm số tự nhiên a nhỏ nhất, biết rằng a chia cho 5,7,9 thì số dư lần lượt là 3,4,5
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
1 số tự nhiên a chia cho 6 dư 2, chia cho 7 dư 4. Tìm số dư khi chia a cho 42
Nguyễn Khánh Linh
bn có thể tham khảo bài làm tương tự tại :
Câu hỏi của nguyễn văn thành - Toán lớp 6 - Học toán với OnlineMath
(bấm vào dòng chữ màu xanh)
chúc các bn hok tốt !
Ta có : a chia 6 dư 2 => a - 2 chia hết cho 6 => a - 2 + 12 chia hết cho 6 => a + 10 chia hết cho 6
a chia 7 dư 4 => a - 4 chia hết cho 7 => a - 4 + 14 chia hết cho 7 => a + 10 chia hết cho 7
=> a + 10 chia hết cho 6 và 7
=. a + 10 thuộc BC ( 6 ; 7 )
Mà BCNN ( 6 ; 7 ) = 42
=> a + 10 thuộc B ( 42 ) = { 0 ; 42 ; ... }
=> a + 10 chia 42 dư 42
=> a chia 42 dư 32
Vậy số a chia cho 42 dư 32
Tính các tổng sau
a, A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99
b, A = 1 - 2 + 2 2 - . . . - 2 2007
c, A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999
a, A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99
B = 5 4 + 5 6 + 5 8 + . . . + 5 100 = 5 . ( 5 3 + 5 5 + 5 7 + . . . + 5 99 ) = 5(A – 1)
A + B – 1 = 5 3 + 5 4 + . . . + 5 100
5(A + B – 1) = 5 4 + 5 5 + . . . + 5 100 + 5 101
4(A + B – 1) = 5(A + B – 1) – (A + B – 1) = 5 101 - 5 3
=> A + B – 1 = 5 101 - 5 3 4
=> A + 5(A – 1) –1 = 5 101 - 5 3 4 => 6A – 6 = 5 101 - 5 3 4
=> A – 1 = 5 101 - 5 3 24
=> A = 5 101 - 5 3 + 24 24
b, A = 1 - 2 + 2 2 - . . . - 2 2007
A = 1 + 2 2 + . . . + 2 2006 - 2 + 2 3 + . . . + 2 2007
A = ( 1 + 2 2 + . . . + 2 2006 ) - 2 . 1 + 2 2 + . . . + 2 2006
A = - 1 + 2 2 + . . . + 2 2006
Đặt B = - 2 + 2 3 + . . . + 2 2007 = - 2 . 1 + 2 2 + . . . + 2 2006 = 2A
A + B = - 1 + 2 + 2 2 + . . . + 2 2006 + 2 2007
2(A+B) = - 2 + 2 2 + . . . + 2 2006 + 2 2007 + 2 2008
A+B = 2(A+B)–(A+B) = - 2 2008 - 1
=> A+2A = - 2 2008 - 1
=> 3A = - 2 2008 - 1
=> A = - ( 2 2008 - 1 ) 3
c, A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999
Đặt B = 7 2 + 7 4 + 7 6 + . . . + 7 1999 + 7 2000 = 7 ( 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999 ) = 7A
A+B = 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000
7(A+B) = 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001
7(A+B) – (A+B) = ( 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001 ) – ( 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000 )
6(A+B) = 7 2001 - 7
A+B = 7 2001 - 7 6
=> A + 7A = 7 2001 - 7 6 => 8A = 7 2001 - 7 6 => A = 7 2001 - 7 48