Tìm số nguyên tố \(\overline{ab}\) biết \(\left|a-b\right|=1\).
1,tìm tất cả các bộ 3 số nguyên tố a,b,c đôi một khác nhau thỏa mãn điều kiện
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
2, Có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)⋮101\)
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
Cho ab là số có 2 chữ số, tìm ab sao cho : \(\frac{\overline{ab}}{\left|a-b\right|}\)là 1 số nguyên tố
Tìm tất cả các số có hai chữ số \(\overline{ab}\) sao cho \(\frac{ab}{\left|a-b\right|}\) là số nguyên tố
Theo đề bài thì ta có:
\(\frac{ab}{|a-b|}=p\) (với p là số nguyên tố)
Xét \(a>b\)
\(\Rightarrow\frac{ab}{a-b}=p\)
\(\Leftrightarrow ab-pa+pb-p^2=-p^2\)
\(\Leftrightarrow\left(p+a\right)\left(p-b\right)=p^2\)
\(\Rightarrow\hept{\begin{cases}p+a=p\\p-b=p\end{cases}}\); \(\hept{\begin{cases}a+p=p^2\\p-b=1\end{cases}}\)
(Vì a, b, p là các số nguyên dương)
Tương tự cho trường hợp \(a< b\)
Làm nốt nhé
Không mất tính tổng quát ta giả sử a > b, đặt a = b + t (0 < t < 10), ta có:
Suy ra t thuộc ước của b2, hay t = {1; b; b2}
Nếu t = 1 thì b2 + b = b(b+1) là số nguyên tố, hay b = 1 => a = 2
Nếu t = b thì b + b = 2b là số nguyên tố, hay b = 1 => a = 2
Nếu t = b2 thì b + 1 là số nguyên tố, hay b = 1, 2, 4, 6 => a = 2, 6, 20, 42
Vậy các số có hai chữ số là 12, 21, 26, 62
Biết \(\overline{abcd}\) là số nguyên tố có bốn chữ số thỏa mãn \(\overline{ab;cd}\) cũng là số nguyên tố và \(b^2\) =\(\overline{cd}\) + b -c. Hãy tìm \(\overline{abcd}\)
1.
a) \(A=\frac{\left(\frac{2018}{1}-1\right)\left(\frac{2018}{2}-1\right)...\left(\frac{2018}{1000}-1\right)}{\left(\frac{1000}{1}+1\right)\left(\frac{1000}{2}+1\right)...\left(\frac{1000}{1007}+1\right)}\)
b) Tìm x biết 378% của x kém A 55 đơn vị.
2. Tìm a, b, c sao cho : \(\frac{\overline{ab}.\overline{bc}.\overline{ca}}{\overline{ab}+\overline{bc}+\overline{ca}}=\frac{3321}{11}\)
Tìm các số tự nhiên \(\overline{ab}\) sao cho \(\overline{ab,}\) \(\overline{ba,}\) \(\overline{\left(a+1\right)b,}\) \(\overline{\left(b+1\right)a}\) là các số nguyên tố có hai chữ số.
ta để dàng thấy được : \(a;b\) là 2 số lẽ khác \(5\)
mà \(\overline{\left(a+1\right)b}\) là số có 2 chữ số \(\Rightarrow\) \(a;b\) khác 9
\(\Rightarrow a;b\in\left\{1,3,7\right\}\)
\(\Rightarrow\left(a;b\right)=\left(1;1\right);\left(1;3\right)\left(1;7\right);\left(3;1\right);\left(3;3\right);\left(3;7\right);\left(7;1\right);\left(7;3\right)\left(7;7\right)\)
thay lại lần lược ta thấy \(\left(1;1\right);\left(1;3\right)\left(3;1\right);\left(3,7\right);\left(7;3\right)\) thõa mãn bài toán
vậy ...
dễ thấy a;b=0 => loại
với a;b đồng thời bằng 1 => loại
=> a>=1 với
a=1 => (a+1)b= 2b là số nguyên tố => b=1
khi đó ab=1 => loại
=> a>1
*với a=2 =>ab=2b là số nguyên tố => b=1
=> (b+1)a=2a là số nguyên tố => a=1 (vô lý)
*với a>2 => a lẻ => a+1 chẵn => (a+1).b chia hết cho 2 và >2 => loại
vậy ko có số tự nhiên a;b thỏa mãn
1) Tìm a,b \(\in N\), biết:
a, BCNN(a,b) - ƯCLN(a,b)=5
b, BCNN(a,b) + ƯCLN(a,b)=42
c, a=2b=48 và ƯCLN + 3.BCNN(a,b)=114
2) Tìm 3 số lẻ liên tiếp đồng thời là 3 số nguyên tố
3) Tìm tất cả các số nguyên tố p vừa là tổng, vừa là hiệu của 2 số nguyên tố
4) Tìm số nguyên tố có 2 chữ số khác nhau dạng \(\overline{ab}\) sao cho \(\overline{ba}\) cũng là số nguyên tố và hiệu \(\overline{ab}-\overline{ba}\) cũng là 1 số nguyên tố
5) Chứng tỏ rằng: nếu ƯCLN(a,b)=1 thì 8a+3 và 5b+1 là số nguyên tố cùng nhau
giúp mk vs
sáng mai mk nộp rồi
ai nhanh mk tik
nguyen van viet
1+1=2
đúng đó
ĐS:2
học tốt!!!
Tìm tất cả các số \(\overline{ab}\) = ? biết T = \(\frac{\overline{ab}}{\left|a-b\right|}\) là số nguyên tố
Bài 4 (3.0 điểm) : Tìm số nguyên tố \(\overline{ab}\) ( a > b > 0 ), sao cho \(\overline{ab}-\overline{ba}\) là số chính phương.
Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b
\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)
=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8
Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn
Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73