Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÊ TRẦN BÁCH
Xem chi tiết
Nguyễn Nhân Dương
11 tháng 9 2023 lúc 20:15

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

DSQUARED2 K9A2
11 tháng 9 2023 lúc 20:18

A = 49/50

Huỳnh Đức Duy
12 tháng 9 2023 lúc 13:51

A = 1/1.2 +1/2.3 +1/3.4 +...+1/49.50    
A = 1 +1/2 -1/2+1/3-1/3+1/4-...-1/49 +1/50    

A = 1 - 1/50   
A=49/50

 


    

 

 

 

 


 

Ngọc Khánh Huyền
Xem chi tiết
Chuu
18 tháng 4 2022 lúc 17:51

A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

A = 1/1 - 1/50

A = 49/50

Nguyễn Ngọc Khánh Huyền
18 tháng 4 2022 lúc 17:51

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

dâu cute
18 tháng 4 2022 lúc 17:52

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

Đặng Tuấn
Xem chi tiết
Yeutoanhoc
19 tháng 6 2021 lúc 14:33

`A=1/(1.2)+1/(2.3)+1/(3.4)+....+1/(49.50)`

`=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50`

`=1-1/50=49/50`

Giải:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) 

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\) 

\(A=1-\dfrac{1}{50}\) 

\(A=\dfrac{49}{50}\)

Boy cute
19 tháng 6 2021 lúc 15:42

+A = \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{49.50}\)

A = 1 - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\)

A = 1 - \(\dfrac{1}{50}\)

A = \(\dfrac{50}{50}\) - \(\dfrac{1}{50}\)

A = \(\dfrac{49}{50}\)

Hương Giang Vũ
Xem chi tiết
Nguyễn acc 2
20 tháng 3 2022 lúc 21:39

\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)

Hương Giang Vũ
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 21:46

\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)

TXT Channel Funfun
Xem chi tiết
Đào Thị Phượng
30 tháng 8 2019 lúc 14:19

Ta có A = 1 / 2 . ( 1 - 1 / 2 + 1 / 2 - 1/ 3 + ............+ 1 / 49 - 1 / 50 )

= 1/ 2 . 1 + ( -1/2 + 1/2 ) + ...........+ ( - 1/49 + 1/49 ) -1/50

=1/2 + 0 + 0 + .................+ 0 - 1/50

= 1/2 - 1/50

=12/25

Vậy A = 12/25

Ta có 12/25 < 1/2

vậy 25/12 < 1/2

Aquarius
Xem chi tiết
Hoàng Thị Ngọc Anh
2 tháng 3 2017 lúc 19:39

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\)

\(\Rightarrow A=\dfrac{49}{50}\)

Vậy \(A=\dfrac{49}{50}.\)

Alone
2 tháng 3 2017 lúc 19:44

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)

Sáng
2 tháng 3 2017 lúc 20:25

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Hòa Đình
Xem chi tiết
Akai Haruma
3 tháng 12 2017 lúc 0:22

Lời giải:

Ta có:

\(\frac{1}{1.2^2}=\frac{1}{2^2}\)

\(2.3^2>3^2\Rightarrow \frac{1}{2.3^2}< \frac{1}{3^2}\)

\(3.4^2> 4^2\Rightarrow \frac{1}{3.4^2}< \frac{1}{4^2}\)

...........

\(49.50^2> 50^2\Rightarrow \frac{1}{49.50^2}< \frac{1}{50^2}\)

Cộng theo từng vế các BĐT:

\(\Rightarrow \frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+....+\frac{1}{49.50^2}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)

\(\Leftrightarrow A< B\)

Vậy ta có đpcm.

Nguyễn Kim Hoàng Anh
Xem chi tiết