Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dat
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
1 tháng 8 2019 lúc 9:21

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)

\(+c^2y^2=0\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

Ngọc Nhi
Xem chi tiết
Hoài Ngọc Phạm
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 6 2019 lúc 8:03

\(\frac{ax+by+cz}{xy}=z\Rightarrow z=\frac{a}{y}+\frac{b}{x}+\frac{cz}{xy}>\frac{a}{y}+\frac{b}{x}\)

Tương tự có \(y>\frac{a}{z}+\frac{c}{x}\); \(x>\frac{b}{z}+\frac{c}{y}\)

\(\Rightarrow x+y+z>\frac{b+c}{x}+\frac{a+c}{y}+\frac{a+b}{z}=\frac{b+c}{x}+x+\frac{a+c}{y}+y+\frac{a+b}{z}+z-x-y-z\)

\(\Rightarrow2\left(x+y+z\right)>2\sqrt{b+c}+2\sqrt{a+c}+2\sqrt{a+b}\)

\(\Rightarrow x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

Nhok baka
Xem chi tiết
Thùy Linh
16 tháng 5 2018 lúc 13:24

Vì 7a + b =0 nên b= -7a

Do đó : f(x) = ax2 + bx +c

= ax2 - 7ax +c

f(10) = 100a - 70a +c

=30a + c

f(-3) = 9a + 21a + c

= 30a +c

Vậy f(10).f(-3)= (30a + c ) 2 \(\ge\) 0

Nguyễn Công Hiếu
Xem chi tiết
lê trần minh quân
Xem chi tiết
Nguyễn Anh Quân
21 tháng 2 2018 lúc 19:51

Nhận xét : số chính phương chia 3 dư 0 hoặc 1

+, Nếu x và y đều ko chia hết cho 3 => x^2 và y^2 đều chia 3 dư 1

=> x^2+y^2 chia 3 dư 2 ( ko t/m )

+, Nếu trong 2 số có 1 số chia hết cho 3 , 1 số ko chia hết cho 3

=> x^2+y^2 chia 3 dư 1 ( ko t/m )

Vậy để x^2+y^2 chia hết cho 3 thì x và y đều chia hết cho 3

Tk mk nha

Lê Tài Bảo Châu
Xem chi tiết
T.Ps
1 tháng 8 2019 lúc 9:20

#)Giải :

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)

\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)

\(\Rightarrowđpcm\)

alibaba nguyễn
1 tháng 8 2019 lúc 9:25

Bài giải thiếu trường hợp \(x+y-1=0\) rồi

T.Ps
1 tháng 8 2019 lúc 9:29

#)Góp ý :

alibaba nguyễn hình như đề bài yêu cầu cm thì chỉ cần cm thui là đc chứ ???

chipi
Xem chi tiết
Lê Trinh mai lan
25 tháng 1 2017 lúc 22:54

mình chịu