Bài 1: a,xem hình 31, có BE song song với CD và AD\(\perp\)AC.
C/minh rằng :
+, BE<CE
+,CE<CD
+,BE<CD
Bài 2:
a,xem hình 32. giải thích tại sao AD<BC
giúp mk vs, cần gấp mai nộp r
a) Tìm một cách chứng minh khác của định lý ở phần c) trang này.
b) Xem hình 31, có BE // CD và AD vuông góc với AC.
Chứng minh rằng:
+) BE < CE;
+) CE < CD;
+) BE < CD.
Bài 1:
a: Xét ΔBNM có AD//NM
nên MN/AD=BM/BD
=>MN*BD=AD*BM
b: ME/AD=CM/CD=CM/BD
MN/AD+ME/AD=BM/BD+CM/BD=BC/BD=2
c:
Xét ΔBÂC có BE là phân giác
nen CE/CA=BC/BA
=>MC/MD=CE/CA=BC/BA
Cho tam giác ABC nhọn có AB < AC. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Qua
B kẻ đường thẳng song song với CD cắt đường thẳng AC tại E.
a, Chứng minh rằng BE = CD; ED =BC
b, Gọi P, Q lần lượt là trung điểm của BE, CD. Chứng minh rằng A là trung điểm của PQ
c, Gọi M là điểm bất kỳ nằm trong tam giác ABC. Xác định vị trí của M để biểu thức
MA.BC +MB.AC +MC.AB đạt giá trị nhỏ nhất. Làm phần a và b thôi cũng được ạ, mình cần hình nữa ạ
cho hình vẽ biết AB song song với CD ; AD song song với BC.
a, chứng minh AB =CD; AD = BC
b,gọi O là giao điểm của AC và BD . Chứng minh O là chung điểm của AC và BD
c,gọi M, N lần lượt là trung điểm của BC và CD ;gọi E,F lần lượt là giao điểm của BD với AM và AN. chứng minh BE=EF=FD
a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)
b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)
c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.
Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.
Bài 1: Cho tam giác ABC với trung tuyến AD. Qua D kẻ đường thẳng song song với AB; qua B kẻ đường thẳng song song với AD. Hai đường thẳng cắt nhau tại điểm E. Gọi K là trung điểm cảu đoạn EC. Chứng minh rằng: 3 điểm A, D, K thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A và có AC = b, AB = c. Hai đường trung tuyến AD, BE cắt nhau tịa G. Tìm quan hệ của b và c để AB vuông góc với BE.
Cho \(\Delta ABC\) có 3 góc nhọn và \(AB< AC\) . Tia phân giác của \(\widehat{BAC}\) cắt BC ở D . Tia \(BE\perp AD\) , tia BE cắt AC tại F .
a) Chứng minh AB = AF
b) Qua F , vẽ đường thẳng song song với BC cắt AD tại H . Lấy \(K\in DC\) sao cho FH = DK . Chứng minh : DH = KF và DH // KF
c) So sánh \(\widehat{ABC}\) và \(\widehat{ACB}\)
Cho ngũ giác ABCDE có cạnh BC song song với đường chéo AD, cạnh CD song song với đường chéo BE, cạnh DE song song với song song với đường chéo AC, cạnh AE song song với đường chéo BD. Chứng minh rằng : AB song song với đường chéo CE
xem hình 31, có BE//CD và AD VUÔNG GÓC AC chứng minh rằng:
BE<CE
CE<CD
BE<CD
Cho tam giác ABC có 3 đường trung tuyến AD, BE, CF. Qua F vẽ đường thẳng song song với BE và cắt tia DE tại M
a/ Chứng minh tứ giác BEMF là hình bình hành
b/ Chứng minh AD, BM, EF đồng quy
c/ Chứng minh AD=CM
lm hết bài, bao gồm câu a,b,c, nhớ vẽ hình
a: Xét ΔABC có
CD/CB=CE/CA
nên DE//AB và DE/AB=1/2
=>EM//BF và EM=BF
=>BEMF là hình bình hành
b: Vì BEMF là hình bình hành
nên BM cắt EF tại trung điểm của mỗi đường(1)
Vì AFDE là hình bình hành
nên AD cắt FE tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AD,BM,EF đồng quy
c: Xét tứ giác ADCM có
E là trung điểm chung của AC và DM
nên ADCM là hình bình hành
=>AD=CM
Bài 1 : Cho hình thang cân ABCD (AD // BC) có góc A = 60 độ , AD = 4 cm và BC = 2 cm. Qua B kẻ đường thẳng song song với CD cắt AD ở E.
1) Tính ED.
2) Chứng minh tam giác ABE đều.
3) Kẻ BH vuông góc với AD ở H. Tính AH.
Bài 2 : Cho tam giác ABC cân tại A có các đường phân giác BE và CF. Chứng minh :
1) Tam giác AEF cân tại A
2) Tứ giác BCEF là hình thang cân
3) CE=EF=FB
Bài 3 : Tứ giac ABCD có góc A=góc B, BC=CD và DB là tia phân giác của góc D. Chứng minh:
1) Tứ giác ABCD là hình thang vuông
2) AC^2 + AD^2 = BC^2 + BD^2
Bài 4 :Cho hình tang cân ABCD (AB song song CD,AB<CD) có AH,BK là các đường cao. Chứng minh :
1) Tam giác AHD=Tam giác BKC
2) DH = (CD-AB)/2
GIÚP TUI VS!!!! CÂN GẤP Ạ
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC