Cho a,b,c thuoc N va s= \(\dfrac{a+b}{c}\)+\(\dfrac{b+c}{a}\)+\(\dfrac{c+a}{b}\) CMR: S>hoac =6
Cho ba so a , b, c thuoc Q khac nhau tung doi mot va khac 0 thoa man \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\). Chung minh \(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\) khong phu thuoc vao cac so a , b, c
Cho a,b,c thuon N sao
Va S=\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
CMR S>bang6
Cho a+b+c+d=2000 và \(\dfrac{1}{a+b+c}+\dfrac{1}{b+c+d}+\dfrac{1}{c+d+a}+\dfrac{1}{d+a+b}=\dfrac{1}{40}\)
Tính S=\(\dfrac{a}{b+c+d}+\dfrac{b}{c+d+a}+\dfrac{c}{d+a+b}+\dfrac{d}{a+b+c}\)
TÍNH:\(S=\dfrac{a}{a+b+c}+\dfrac{a+b+c}{a}+\dfrac{b}{a+b+c}+\dfrac{a+b+c}{b}+\dfrac{c}{a+b+c}+\dfrac{a+b+c}{c}-\dfrac{a}{b}-\dfrac{a}{c}-\dfrac{b}{a}-\dfrac{b}{c}-\dfrac{c}{a}-\dfrac{c}{b}\)
\(S=\dfrac{a}{a+b+c}+\dfrac{a+b+c}{a}+\dfrac{b}{a+b+c}+\dfrac{a+b+c}{b}+\dfrac{c}{a+b+c}+\dfrac{a+b+c}{c}-\dfrac{a}{b}-\dfrac{a}{c}-\dfrac{b}{a}-\dfrac{b}{c}-\dfrac{c}{a}-\dfrac{c}{b}=\dfrac{a+b+c}{a+b+c}+\dfrac{a+b+c-b-c}{a}+\dfrac{a+b+c-a-c}{b}+\dfrac{a+b+c-a-b}{c}=1+1+1+1=4\)
Cho 3 so khac nhau va khac 0 thoa man \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\).Khi do gia tri cua \(P=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
Theo bài ra:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b};a\ne b\ne c;a,b,c\ne0\)
\(P=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(hay:\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow a=\dfrac{b+c}{2}\)
Thay \(a=\dfrac{b+c}{2}\) vào \(P\), ta có:
\(P=\dfrac{b+c}{\dfrac{b+c}{2}}+\dfrac{b+c+c}{b}+\dfrac{b+c+b}{c}\\ P=\dfrac{2\left(b+c\right)}{b+c}+\dfrac{2c+b}{b}+\dfrac{2b+c}{c}\\ P=2+\dfrac{2c}{b}+\dfrac{b}{b}+\dfrac{2b}{c}+\dfrac{c}{c}\\ P=2+\dfrac{2c}{b}+1+\dfrac{2b}{c}+1\\ P=\left(2+1+1\right)+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c+2b}{b+c}\\ P=4+\dfrac{2\left(b+c\right)}{b+c}\\ P=4+2\\ P=6\)
Vậy: \(P=6\)
a) Cho các số a, b, c thỏa mãn abc\(\ne\) 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)=\(\dfrac{1}{3}\). Tính S= a + b + c + 2021.
1) cho a+b+c=0 va a^2+b^2+c^2=16 tính a^4+b^4+c^4
2) cho a+b+c=0 va a^2+b^2+c^2=1981 tính a^4+b^4+c^4
3) cho a+b+c=4 va a^2+b^2+c^2=16 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) tính xy + yz + zx
4) cho a+b+c=30 va a^2+b^2+c^2=300 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)tính xy + yz + zx
Bài 1:
\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)
1. Ta có $a + b + c = 0$
\(\Rightarrow\) $( a + b + c)^2 = 0$
\(\Leftrightarrow\) $a^2+b^2 +c^2 +2ab+2bc+2ac = 0
\(\Leftrightarrow\) $a^2 + b^2 + c^2 = -2(ab+bc+ac)$
Thay $a^2 + b^2 + c^2 = 2$
\(\Rightarrow\)$2 = -2(ab+bc+ac)$ \(\Rightarrow\) $ab + bc +ac = -1 $
Ta có: $(a^2+b^2+c^2) = 2$
\(\Leftrightarrow\) $(a^2+b^2+c^2)^2 = 4$
\(\Leftrightarrow\)$a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2 = 4$
\(\Leftrightarrow\) $a^4+b^4+c^4 + 2(a^b^2+b^2c^2+a^2c^2) = 4$ (1)
Do $2(ab+bc+ac)^2 = 2(a^2b^2+b^2c^2+a^2c^2 + 2a^2bc+2ab^2c+2abc^2)$ (2)
Từ (1)(2) => $a^4+b^4+c^4+2(ab+bc+ac)^2 - 4abc(a+b+c) = 4$(3)
Thay $(ab+bc+ac) = -1$ và $a+b+c = 0$ (4)
Từ (3)(4) => $a^4 + b^4 + c^4 +2(-1)^2 -4abc.(0) = 4 $
<=> $a^4 + b^4 + c^4 + 2 = 4 => a^4 + b^4 + c^4 = 2 $
1, cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\) va a+b+c khac 0 tinh b,c
Theo dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\) (vì \(a+b+c\ne0\))
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c=\pm1\)
Coi a,b,c là nguyên dương. Cho S1= \(\dfrac{a^2}{a+b}\) + \(\dfrac{b^2}{b+c}\) + \(\dfrac{c^2}{c+a}\) ; S2= \(\dfrac{a^2}{a+c}\) + \(\dfrac{b^2}{a+b}\) + \(\dfrac{c^2}{b+c}\)
Chứng minh S1=S2 ; S1 ≥ \(\dfrac{a+b+c}{2}\)