Theo dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\) (vì \(a+b+c\ne0\))
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c=\pm1\)
Theo dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\) (vì \(a+b+c\ne0\))
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c=\pm1\)
Cho 3 so khac nhau va khac 0 thoa man \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\).Khi do gia tri cua \(P=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
Biet \(\dfrac{a}{a}=\dfrac{b}{b}=\dfrac{c}{c}=4\) va \(a+b+c\ne0\)
Tinh \(M=\dfrac{a+b+c}{a+b+c}\)
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Cho \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) (với a,b,c khác 0, b khác c) chứng minh rằng \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Cho a.b.c khác 0 và \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính P = \(\left(1+\dfrac{b}{a}\right).\left(1+\dfrac{c}{b}\right).\left(1+\dfrac{a}{c}\right)\)
cho \(\dfrac{1}{c}=\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{c}\right)vớia,b,c\)khác 0 b khác 0
cm rằng\(\dfrac{a}{b}=\dfrac{a}{c}-\dfrac{c}{d}\)
Cho \(\dfrac{1}{c}=\dfrac{1}{2}\times\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\) và a,b,c khác 0. Chúng minh \(\dfrac{a}{b}=\dfrac{a-c}{b-c}\)
Cho a , b , c ≠ 0 thỏa mãn a + b + c = 0 . Tính A = \((1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})\)
cho a,b,c là ba số thực khác khác 0 tm đk \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
hãy tính \(b=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)