Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lemaingoc
Xem chi tiết
Karroy Yi
Xem chi tiết
Lê Chí Công
26 tháng 7 2016 lúc 14:11

x^2+x+1/4+3/4

=(x+1/2)^2+3/4

=> A min=3/4

Câu  kia tương tự .......

Đặng Tiến
26 tháng 7 2016 lúc 15:20

\(A=x^2+x+1=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0,x\in R\)

nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},x\in R\)

Vậy \(Min_A=\frac{3}{4}\)khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

\(B=\left(x+2\right)^2+\left(x-3\right)^2=x^2+2x+1+x^2-6x+9=2x^2-4x+10=2\left(x^2-2x+5\right)\)

\(B=2\left(x^2-2x+1+4\right)=2\left(x-1\right)^2+4\)

Vì \(2\left(x-1\right)^2\ge0,x\in R\)

nên \(2\left(x-1\right)^2+4\ge4,x\in R\)

Vậy \(Min_B=4\)khi \(x-1=0\Rightarrow x=1\)

Vầng Trăng Khuyết
26 tháng 7 2016 lúc 15:28

x=1 nhé

Minh Cao
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2021 lúc 21:04

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Doãn Thị Thu Trang
Xem chi tiết
ĐINH NHẬT BẢO NHI
Xem chi tiết
Hoài Đoàn
Xem chi tiết
Đức Huy ABC
7 tháng 1 2017 lúc 18:38

1. Vì \(x^2\ge0\left(\text{ với mọi x}\right)\)(1)

=>\(x^2+2\ge2>0\)

=>\(\left(x^2+2\right)^2>0\)(2)

Từ (1) và (2) =>\(\frac{x^2}{\left(x^2+2\right)^2}\le\frac{0}{\left(x^2+2\right)^2}=0\) hay A\(\le0\)

=> giá trị lớn nhất của A là 0, khi và chỉ khi \(x^2=0\) <=> x=0.

Phương Linh
Xem chi tiết
Tạ Duy Phương
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

Đinh Thị Ngọc Anh
Xem chi tiết
Nhỏ's Dê's
Xem chi tiết