Tìm x trong các biểu thức sau:
120+(34+3x)-(6+x)=0
\(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
BT1: Trong các biểu thức sau, biểu thức nào là đơn thức?
\(x^2y,-3x-1,\dfrac{1}{5}-x^2y,-13,\dfrac{1}{6-x},\left(-2\right)^3xy^7\)
Bài 1. Trong các biểu thức sau, biểu thức nào là phân thức đại số
A. \(\dfrac{\dfrac{1}{2}x+5}{3x^3+3x+12}\) B. \(\dfrac{\dfrac{1}{x}}{2x+5}\) C. 4x2 – 5y D. \(\dfrac{1+\dfrac{1}{x}}{2-\dfrac{2}{x}}\)
tìm điều kiện xác định của các biểu thức
a)\(\dfrac{2x^2+7}{3x+21}\) b)\(\dfrac{x+5}{-12+6}\)
a) Để giá trị của \(\dfrac{2x^2+7}{3x+21}\) được xác định thì 3x + 21 \(\ne\) 0
=> 3(x+7) \(\ne\) 0
=> x+7 \(\ne\) 0
=> x \(\ne\) -7
Vậy để giá trị của biểu thức \(\dfrac{2x^2 +7}{3x+21}\) được xác định thì x \(\ne\) -7
b) Để giá trị của \(\dfrac{x+5}{-12+6}\) được xác định thì x \(\in\) R ( vì -12+6 \(\ne\) 0)
h) \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
i) \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
k) \(\dfrac{13}{x-1}+\dfrac{5}{2x-2}-\dfrac{6}{3x-3}\)
`h)x/2-1/x=1/12(x ne 0)`
`<=>6x^2-12=x`
`<=>6x^2-x-12=0`
`<=>6x^2-9x+8x-12=0`
`<=>3x(2x-3)+4(2x-3)=0`
`<=>(2x-3)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac32\\x=-\dfrac43\end{array} \right.\)
`i)x^2-7/6x+1/3=0`
`<=>6x^2-7x+2=0`
`<=>6x^2-3x-4x+2=0`
`<=>3x(2x-1)-2(2x-1)=0`
`<=>(2x-1)(3x-2)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac23\end{array} \right.\)
Câu cuối không có dấu "=" nên không tìm được x :v
- Hai câu h, i bấm nốt đáp án để đẹp nha ;-; câu k thiếu đề :v
h) Ta có: \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Leftrightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Leftrightarrow12\left(x^2-2\right)-2x=0\)
\(\Leftrightarrow12x^2-2x-24=0\)
\(\Delta=\left(-2\right)^2-4\cdot12\cdot\left(-24\right)=1156\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2+34}{12}=\dfrac{36}{12}=3\\x_2=\dfrac{2-34}{12}=\dfrac{-32}{12}=-\dfrac{8}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{3;-\dfrac{8}{3}\right\}\)
i) Ta có: \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
Quy đồng các phân thức sau:
9) \(\dfrac{2}{x^2-2x};\dfrac{x}{3x-6}\)
10) \(\dfrac{x}{x-5};x+1\)
11) \(\dfrac{x}{x^2+x+5};-3\)
12)\(\dfrac{x}{2x-8};\dfrac{x+1}{4x-x^2}\)
\(9,\dfrac{2}{x^2-2x}=\dfrac{6}{3x\left(x-2\right)};\dfrac{x}{3x-6}=\dfrac{x^2}{3x\left(x-2\right)}\\ 10,\dfrac{x}{x-5}=\dfrac{x}{x-5};x+1=\dfrac{\left(x+1\right)\left(x-5\right)}{x-5}\\ 11,-3=\dfrac{-3\left(x^2+x+5\right)}{x^2+x+5}\\ 12,\dfrac{x}{2x-8}=\dfrac{x^2}{2x\left(x-4\right)};\dfrac{x+1}{4x-x^2}=\dfrac{-2\left(x+1\right)}{2x\left(x-4\right)}\)
Bài 3: Trong các biểu thức sau, đâu là đơn thức?
(1-\(\dfrac{1}{\sqrt{3}}\)) x2; \(\dfrac{1}{2}\)(x2 - 1); x2. \(\dfrac{7}{2}\); 6\(\sqrt{y}\); \(\dfrac{1-\sqrt{5}}{x}\); \(\dfrac{x-y^2}{4}\)
Các đơn thức là :
\(\left(1-\dfrac{1}{\sqrt[]{3}}\right)x^2;x^2.\dfrac{7}{2}\)
Giải các phương trình sau:
\(a.\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(b.\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(c.2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)
\(d.\dfrac{7}{8}x-5\left(x-9\right)=\dfrac{20x+1,5}{6}\)
\(e.\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(f.\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
a: =>10x-4=15-9x
=>19x=19
hay x=1
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x-32x=60-9
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)
=>3x=6/5
hay x=2/5
d: \(\Leftrightarrow\dfrac{7x}{8}-\dfrac{5\left(x-9\right)}{1}=\dfrac{20x+1.5}{6}\)
\(\Leftrightarrow21x-120\left(x-9\right)=4\left(20x+1.5\right)\)
=>21x-120x+1080=80x+60
=>-179x=-1020
hay x=1020/179
e: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>95x+6x=96+5
=>x=1
f: \(\Leftrightarrow6\left(x+4\right)+30\left(-x+4\right)=10x-15\left(x-2\right)\)
=>6x+24-30x+120=10x-15x+30
=>-24x+96=-5x+30
=>-19x=-66
hay x=66/19
Tìm các giá trị nguyên của x để mỗi biểu thức sau có giá trị nguyên:
a) \(\dfrac{6}{2x+1}\) d)\(\dfrac{2x+3}{x-3}\)
b)\(\dfrac{-15}{3x-1}\) e)\(\dfrac{x+3}{2x-1}\)
c)\(\dfrac{x-3}{x-1}\)
a, \(\dfrac{6}{2x+1}\Rightarrow2x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2x + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
x | 0 | -1 | 1/2 ( loại ) | -3/2 ( loại ) | 1 | -2 | 5/2 ( loại ) | -7/2 ( loại ) |
c, \(\dfrac{x-3}{x-1}=\dfrac{x-1-2}{x-1}=1-\dfrac{2}{x-1}\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x - 1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
tương tự ....
Giải các phương trình sau:
\(a.\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(b.\dfrac{7}{x+2}=\dfrac{3}{x-5}\)
\(c.\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
\(d.\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
TK
https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5
a: \(\Leftrightarrow4x-5=2x-2+x\)
=>4x-5=3x-2
=>x=3(nhận)
b: =>7x-35=3x+6
=>4x=41
hay x=41/4(nhận)
c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
=>-6x+16=-5x+11
=>-x=-5
hay x=5(nhận)
d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)
\(\Leftrightarrow4x=16\)
hay x=4(nhận)