Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Ngọc Huyền Thương
Xem chi tiết
Cà Quốc Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2017 lúc 12:20

a)  − 1 20 > − 11 40

b)  5 9 > 2 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 6 2019 lúc 4:43

a ) − 1 10 < 1. b ) 39 20 < 2. c ) − 1 20 > − 11 40 . d ) 5 9 > 2 9

Nguyễn Thu Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 12:39

Bài 1: 

a: \(\Leftrightarrow3^x\cdot10=810\)

\(\Leftrightarrow3^x=81\)

hay x=4

c: \(\Leftrightarrow5^x\cdot5+5^x\cdot\dfrac{1}{25}=126\)

\(\Leftrightarrow5^x\cdot\dfrac{126}{25}=126\)

\(\Leftrightarrow5^x=25\)

hay x=2

Bài 2: 

a: \(27^{11}=3^{33}\)

\(81^8=3^{32}\)

mà 33>32

nên \(27^{11}>81^8\)

c: \(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}\)

mà 20<21

nên \(625^5< 125^7\)

Lê Minh Thuận
Xem chi tiết
HT.Phong (9A5)
13 tháng 1 lúc 18:31

Tính chất nếu: 

\(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) 

Ta có:

\(A=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}\)

\(A>\dfrac{10^{99}+10}{10^{89}+10}\)

\(A>\dfrac{10\cdot\left(10^{98}+1\right)}{10\cdot\left(10^{88}+1\right)}\)

\(A>\dfrac{10^{98}+1}{10^{88}+1}\)

\(A>B\)

Nguyễn Việt Lâm
13 tháng 1 lúc 18:31

\(A=\dfrac{10^{99}+1}{10^{89}+1}< \dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}\)

Vậy \(A< B\)

Trần Thị Hảo
Xem chi tiết
Bùi Kim Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2020 lúc 12:04

b) Ta có: \(\left|209-x\right|\ge0\forall x\)

\(\Leftrightarrow\left|209-x\right|+2078\ge2078\forall x\)

Dấu '=' xảy ra khi 209-x=0

hay x=209

Vậy: Giá trị nhỏ nhất của biểu thức A=|209-x|+2078 là 2078 khi x=209

Loan Trần
Xem chi tiết
Bùi Kim Ngân
Xem chi tiết
santa
29 tháng 12 2020 lúc 12:31

2515 = (52)15 = 530

810.330 = (23)10.330 = 230.330 = 630

Vì 530 < 630 (0<5<6)

=> 2515 < 810.330

truongvinamilk12
29 tháng 12 2020 lúc 12:33

\(25^{15}=\left(5^2\right)^{15}=5^{30}\)

\(8^{10}\cdot3^{30}=\left(2^3\right)^{10}\cdot3^{30}=2^{30}\cdot3^{30}=\left(2\cdot3\right)^{30}=6^{30}\)

Vì \(5< 6\) nên \(5^{30}< 6^{30}\)

Vậy \(25^{15}< 8^{10}\cdot3^{30}\)