Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Nguyễn Khánh Ngọc
Xem chi tiết
Bla bla bla
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:05

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp

Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:07

2.

\(VT=a\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+b\left(\dfrac{1}{a^2}+\dfrac{1}{c^2}\right)+c\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(VT\ge\dfrac{2a}{bc}+\dfrac{2b}{ac}+\dfrac{2c}{ab}=2\dfrac{a^2+b^2+c^2}{abc}\)

\(VP=\dfrac{2\left(ab+bc+ca\right)}{abc}\)

\(\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{a^2+b^2+c^2}{abc}\)

\(\Rightarrow ab+bc+ca\ge a^2+b^2+c^2\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\)

\(\Rightarrow a=b=c\)

Nguyễn Việt Lâm
24 tháng 1 2022 lúc 23:13

3.

\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\)

\(\Rightarrow\left(\dfrac{x^2-yz}{a}\right)^2=\left(\dfrac{y^2-xz}{b}\right)\left(\dfrac{z^2-xy}{c}\right)=\dfrac{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}{a^2-bc}\)

\(=\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}\)

Tương tự:

\(\left(\dfrac{y^2-xz}{b}\right)^2=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}\)

\(\left(\dfrac{z^2-xy}{c}\right)^2=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)

\(\Rightarrow\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)

\(\Rightarrow\dfrac{x}{a^2-bc}=\dfrac{y}{b^2-ac}=\dfrac{z}{c^2-ab}\Rightarrowđpcm\)

slyn
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2021 lúc 22:35

\(\Leftrightarrow\dfrac{x+1}{\left(x-3\right)\left(x+2\right)\cdot B}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)

\(\Leftrightarrow B=\dfrac{x-1}{\left(x-3\right)\left(x+2\right)}\)

Hoàng Việt Tân
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2022 lúc 14:07

\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)

Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)

\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)

\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)

\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)

\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)

Vũ Thảo Nhi
Xem chi tiết
Hồ Lê Thiên Đức
24 tháng 5 2022 lúc 10:13

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

Quốc Khánh
Xem chi tiết