a. Cho x,y,z là 3 số khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức A=\(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\)
b. Cho a,b,c là các số hữu tỉ khác nhau từng đôi một. Chứng minh rằng A=\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\)
là bình phương của 1 số hữu tỉ
c. Tìm giá trị lớn nhất của biểu thức B=\(\dfrac{5x^2+4x-1}{x^2}\)
Cho các số x, y, z khác 0 thỏa mãn \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
CMR: \(A=\dfrac{a}{bcx^2}+\dfrac{b}{acy^2}+\dfrac{c}{abz^2}\) không phụ thuộc vào x, y, z
1)Thực hiện phép tính :
a) \(\dfrac{x^2-y^2}{x^3}+y^3.\left[\left(x-\dfrac{x^2+y^2}{y}\right):\left(\dfrac{1}{x}-\dfrac{1}{y}\right)\right]\)
2) CMR nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
thì \(\dfrac{1}{x^5}+\dfrac{1}{y^5}+\dfrac{1}{z^5}=\dfrac{1}{x^5+y^5+z^5}\).
1, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-xy}{3xy-3y^2}\) (x # y, y # 0)
b, \(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\) (b # 0, x # \(\pm1\))
c, \(\dfrac{4x^2-4xy}{5x^3-5x^2y}\) ( x 3 ), x # y)
d, \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\) (x+y+z # 0)
e, \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\) ( x # 0, x # \(\pm y\))
2, Rút gọn, rồi tính giá trị các phân thức sau :
a, A= \(\dfrac{2x^2+2x\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\) với x = \(\dfrac{1}{2}\)
b, B=\(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}\) với x = -5; y = 10
3, Rút gọn các phân thức sau :
a, \(\dfrac{\left(a+b\right)^2-c^2}{a+b+c}\)
b, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
c, \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
1, Rút gọn các phân thức sau :
a, \(\dfrac{5x}{10}\)
b, \(\dfrac{4xy}{2y}\) ( y # 0)
c, \(\dfrac{21x^2y^3}{6xy}\) ( xy # 0)
d, \(\dfrac{2x+2y}{4}\)
e, \(\dfrac{5x-5y}{3x-3y}\) ( x # y)
f, \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}\) ( x # y)
2, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-16}{4x-x^2}\) ( x # 0, x # 4)
b, \(\dfrac{x^2+4x+3}{2x+6}\) ( x # -3)
c, \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}\) ( y + ( x+y) # 0)
d, \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\) ( x # y)
e, \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}\) (x # -y)
bài 1. rút gọn phân thức sau :
a, \(\dfrac{15xy}{10x^2y}\)
b, \(\dfrac{4\left(2-x\right)}{6x\left(x-2\right)}\)
c, \(\dfrac{12x^3\left(x-4\right)^2}{8x^2\left(4-x\right)}\)
d, \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)
bài 2. rút gọn phân thức sau :
a, \(\dfrac{15\left(x-3\right)^3}{9-3x}\)
b, \(\dfrac{4\left(5x-1\right)^3}{2-10x}\)
c,\(\dfrac{9x^2y}{-15x^3y}\)
d, \(\dfrac{-15x\left(x-y\right)^2}{6x^2\left(x-y\right)^3}\)
bài 3. rút gọn phân thức sau :
a, \(\dfrac{5x^2+10x+5}{11x+11}\)
b, \(\dfrac{18x+6x^2+2x^3}{x^3-27}\)
c, \(\dfrac{12x^2+12x+3}{4x^2-1}\)
bài 4 : rút gọ phân thức đại số
A= \(\dfrac{12xy^2}{-9x^3y}\)
B=\(\dfrac{35xy\left(x-4\right)^2}{28x^2\left(4-x\right)}\)
C= \(\dfrac{6x+18y}{x^2-9y^2}\)
bài 1
a\(\dfrac{x+3}{2x-2}-\dfrac{4}{x^2-1}.\dfrac{x+1}{2}\)
b\(\left(x^2-4\right)\left(\dfrac{1}{x+2}+\dfrac{1}{2-x}-1\right)\)
bài 2
cho hình bình hành ABCD có AD= 2AB góc a bằng 60 độ. Gợi E ,F là chung diểm của BC và AD
a/ chứng minh rằng tứ giác ABEF là hình thoi
b/ chứng minh rằng tứ giác BFDC là hình thang cân
c/ lấy điểm M đối xứng với điểm A qua B chứng minh tứ giác BMCD là hình chữ nhật
monh các bậc CAO NHÂN giải hộ mình với ạ
1. TÌm GTNN:
a, M=\(\dfrac{x^4+1}{\left(x^2+1\right)^2}\)
b, N=\(\dfrac{x^2}{-4y^2+20xy-29x^2}\)
2. Tìm GTNN và GTLN của biểu thức:
a,A=\(\dfrac{2x^2-2x+9}{x^2+2x+5}\)
b, B=\(\dfrac{4x^3}{x^2+1}\)
c, C=\(\dfrac{2\left(x^2+x+1\right)}{x^2+1}\)
d, D=\(\dfrac{x^2+xy+y^2}{x^2+y^2}\)với x khác 0
Chứng minh đẳng thức sau:
a) \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{x+y}{x+y+z}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2xz}=\dfrac{x+y+z}{x-z-y}\)
c) \(\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{x^2-1}{x}\)
d) \(\dfrac{4x^3-8x^2+3x-6}{12x^3+4x^2+9x+3}=\dfrac{x-2}{3x+1}\)
m.n jup mk vs mai nộp bài