1) a) \(\dfrac{x^2-y^2}{x^3}+y^{^3}.\left(\dfrac{xy-x^2-y^2}{y}.\dfrac{xy}{y-x}\right)\)
\(=\dfrac{x^2-y^2}{x^3}+y^3.\dfrac{x\left(xy-x^2-y^2\right)}{y-x}\)
\(=\dfrac{x^2-y^2}{x^3}+\dfrac{xy^3\left(xy-x^2-y^2\right)}{y-x}\)
\(=\dfrac{-\left(x-y\right)^2\left(x+y\right)+xy^3\left(xy-x^2-y^2\right)}{x^3\left(y-x\right)}\)
Cậu tự thu gọn nốt nhé , tớ sắp đi hok
Bài 2 . Theo giả thiết : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
=> \(\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)
=> \(\left(x+y+z\right)\left(yz+zx+xy\right)=xyz\)
=>\(x\left(yz+xz+xy\right)+y\left(yz+xz+xy\right)+z\left(yz+xz+xy\right)-xyz=0\)=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
Ta có :
* x = - y
* y = -z
* x = -z
Áp dụng đều này vào phân thức cần CM , ta có :
TH1 . x = -y
\(\dfrac{1}{\left(-y\right)^5}+\dfrac{1}{y^5}+\dfrac{1}{z^5}=\dfrac{1}{\left(-y\right)^5+y^5+z^5}\)
=> \(\dfrac{1}{z^5}=\dfrac{1}{z^5}\), luôn đúng
Tương tự thử với các trường hợp còn lại ta cũng sẽ có được đpcm