Cho N=1+6+62+63+...+697+698+699
chứng minh N chia hết cho 259
Cho M = 1+6+62+63+...+699
Chứng minh rằng:
a, M chia hết cho 7
b, m chia hết cho 259
a)Tìm số nguyên sao cho 4n-5 chia hết cho n-3
b)Chứng minh rằng:
S=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
a) Giải:
Ta có: \(4n-5=4\left(n-3\right)+7\)
Để \(\left(4n-5\right)⋮\left(n-3\right)\Leftrightarrow7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)\in\left\{\pm1;\pm7\right\}\)
Nên ta có bảng sau:
\(n-3\) | \(n\) |
\(1\) | \(4\) |
\(-1\) | \(2\) |
\(-7\) | \(-4\) |
\(7\) | \(10\) |
Vậy \(n=\left\{2;4;-4;10\right\}\)
b) Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét:
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)
cho A= 2^1+2^2+2^3+....+2^61+2^62+2^63.chứng minh A chia hết cho 14
A=21+22+23+...+261+262+263
A=(21+22+23)+...+(261+262+263)
A=14+...+261.(21+22+23)
A=14+...+261.14 chia hết cho 14
tick ủng hộ mình nha
Câu 61
3 × 2x - 3 = 45
A. 3 B. 4 C. 5 D. 6
Câu 62 : Tìm số tự nhiên n biết n + 9 chia hết cho n + 2
A. 3 B. 4 C. 3 D. Không tồn tại
Câu 63 : Tìm số tự nhiên n biết n + 6 chia hết cho n +5
A. 1 B. 2 C. 3 D. Không tồn tại
Câu 64 : Tìm số tự nhiên x sao cho x € U (15) và x > 4
A. 3 B. 4 C. 5 D. 6
1. chứng minh: 55^n+1-55^n chia hết cho 54
2. chứng minh: 5^6-10^4 chia hết cho 54
3. chứng minh: n^2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
Chứng minh rằng :
a/ với mọi n thuộc N ta có : ( n + 3 ).( n + 13 ).( n + 14 ) chia hết cho 6
b/ với mọi n thuộc N* ta có : A = 34n + 1 + 24n + 1 chia hết cho 5
c/ với mọi n thuộc N* ta có : 56n + 777...777 chia hết cho 63 ( 777...777 có n chữ số 7 )
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
a,
n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2
TH1: n2 : 3 <=> (3k+1)2 : 3 = (9k2+6k+1) : 3 => dư 1
TH2: n2 : 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1
các phần sau làm tương tự.