Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Tam Nguyen
Xem chi tiết
TFBoys
8 tháng 8 2017 lúc 11:19

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

TFBoys
8 tháng 8 2017 lúc 11:03

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

TFBoys
8 tháng 8 2017 lúc 11:08

2. \(\left\{{}\begin{matrix}\left(xy-x\right)-\left(y-1\right)=6\\\left(yz-y\right)-\left(z-1\right)=12\\\left(zx-z\right)-\left(x-1\right)=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\left(y-1\right)\left(z-1\right)=12\\\left(z-1\right)\left(x-1\right)=8\end{matrix}\right.\)

Đến đây dễ rồi

Đỗ Hương Giang
Xem chi tiết
Anime
Xem chi tiết
Lê Song Phương
29 tháng 5 2023 lúc 19:24

 Từ \(x^3+y^3+z^3=-3\) 

\(\Leftrightarrow2x^3+2y^3+2z^3=-6\) 

\(\Leftrightarrow2x^3+2y^3+2z^3=-3\left(x^2y+y^2z+z^2x\right)-3\left(xy^2+yz^2+zx^2\right)\)

\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+\left(y^3+3y^2z+3yz^2+z^3\right)+\left(z^3+3z^2x+3zx^2+x^3\right)=0\)

\(\Leftrightarrow\left(x+y\right)^3+\left(y+z\right)^3+\left(z+x\right)^3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y+y+z+z+x=0\\x+y=y+z=z+x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)

 Xét TH \(x=y=z\), thay vào pt thứ 3 của hệ, ta có \(3x^3=-3\Leftrightarrow x=-1\) \(\Rightarrow\left(x;y;z\right)=\left(-1;-1;-1\right)\). Thử lại vào 2 pt đầu, ta thấy rõ ràng không thỏa mãn.

 Xét TH \(x+y+z=0\), ta sẽ có \(x^3+y^3+z^3=3xyz\) \(\Rightarrow xyz=-1\)

 Thay vào pt đầu tiên của hệ, thu được \(x^2y+y^2z+z^2x=-xyz\) \(\Leftrightarrow x^2y+y^2z+z^2x+xyz=0\). Tương tự, ta có \(xy^2+yz^2+zx^2+xyz=0\). Cộng theo vế 2 pt này, ta được \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\). Ta xét TH \(x+y=0\). Do \(x+y+z=0\) nên \(z=0\) và \(x=-y\), không thỏa mãn pt thứ 3. Tương tự với 2 trường hợp còn lại.

 Vậy hpt đã cho vô nghiệm.

〄κҽᏁ_℘ċム
29 tháng 5 2023 lúc 15:04

Lấy (2) cộng (3) ta được

�2+�2−��−��=2 (4)

Lấy (1) - (4) ta được

2�(�+�)=0

⇔[�=0�=−�

Xét 2 TH rồi thay vào tìm được y và z

 

〄κҽᏁ_℘ċム
29 tháng 5 2023 lúc 16:19

Nhớ tick nha

{3�2+��−��+�2=2(1)�2+��−��+�2=0(2)�2−��−��−�2=2(3)

Lấy (2) cộng (3) ta được

�2+�2−��−��=2 (4)

Lấy (1) - (4) ta được

2�(�+�)=0

⇔[�=0�=−�

Xét 2 TH rồi thay vào tìm được y và z

Mạnh Phan
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2021 lúc 17:41

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=5\\zx+z+x+1=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=10\end{matrix}\right.\) (1)

Nhân vế với vế: \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\) (2)

Chia vế cho vế của (2) cho từng pt của (1):

\(\Rightarrow\left\{{}\begin{matrix}z+1=5\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(1;0;4\right)\) (loại)

Hệ vô nghiệm do \(y>0\)

Trần Minh Hiển
Xem chi tiết
Lê Thị Thục Hiền
4 tháng 10 2019 lúc 21:49

\(\left\{{}\begin{matrix}x+y+z=6\left(1\right)\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x+y+z\right)^2=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}xy+yz+xz=11\\xy+yz-xz=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}xy+yz=\frac{11+7}{2}=9\\xz=\frac{11-7}{2}=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y\left(x+z\right)=9\\x=\frac{2}{z}\end{matrix}\right.\)

=>\(y\left(\frac{2}{z}+z\right)=9\)

<=> \(y=\frac{9}{\frac{2}{z}+z}=\frac{9}{\frac{2+z^2}{z}}=\frac{9z}{2+z^2}\)

Thay \(x=\frac{2}{z},y=\frac{9z}{2+z^2}\) vào (1) có:

\(\frac{2}{z}+\frac{9z}{2+z^2}+z=6\)

<=> \(\frac{2\left(2+z^2\right)+9z^2+z^2\left(2+z^2\right)}{z\left(2+z^2\right)}=6\)

<=>\(4+2z^2+9z^2+2z^2+z^4=6z\left(2+z^2\right)\)

<=> \(z^4+13z^2+4-12z-6z^3=0\)

<=> \(z^4-3z^3+2z^2-3z^3+9z^2-6z+2z^2-6z+4=0\)

<=>\(z^2\left(z^2-3z+2\right)-3z\left(z^2-3z+2\right)+2\left(z^2-3z+2\right)=0\)

<=> \(\left(z^2-3z+2\right)^2=0\)

<=> \(z^2-3z+2=0\)<=> \(z\left(z-2\right)-\left(z-2\right)=0\)

<=> \(\left(z-1\right)\left(z-2\right)=0\)

=>\(\left[{}\begin{matrix}z=1\\z=2\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\frac{2}{z}=2,y=\frac{9z}{2+z^2}=3\\x=1,y=3\end{matrix}\right.\)

Vậy (x,y,z) \(\in\left\{\left(2,3,1\right),\left(1,3,2\right)\right\}\)

Nguyễn Thiện Minh
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
24 tháng 9 2018 lúc 19:56

\(\left\{{}\begin{matrix}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-x-y-1=-2\\yz-y-z-1=4\\zx-z-x-1=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=-2\\\left(y-1\right)\left(z-1\right)=4\\\left(z-1\right)\left(x-1\right)=1\end{matrix}\right.\)

Cô Pê
Xem chi tiết
Phùng Khánh Linh
11 tháng 1 2019 lúc 18:34

hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )

Cộng từng vế của các pt lại với nhau , ta có :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)

\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)

\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)

\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)

Nguyễn Thị Thúy Ngân
Xem chi tiết
Lê Thị Thục Hiền
25 tháng 5 2021 lúc 15:25

PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Nhận thấy VT\(\ge\)0 với mọi x,y,z

Dấu = xảy ra <=> x=y=z

Thay x=y=z vào pt (2) ta được:

\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)

\(\Rightarrow x=y=z=3\)

Vậy (x;y;z)=(3;3;3)

Trần Quốc Khanh
Xem chi tiết