giải hệ phương trình
\(\left\{\begin{matrix}x+xy+y=1\\y+yz+z=3\\z+zx+x=7\end{matrix}\right.\)
giải hệ 1 \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}xy-x-y=5\\yz-y-z=11\\zx-z-x=7\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\\y^2+xy-yz+z^2=0\\x^2-xy-xz-z^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
2. \(\left\{{}\begin{matrix}\left(xy-x\right)-\left(y-1\right)=6\\\left(yz-y\right)-\left(z-1\right)=12\\\left(zx-z\right)-\left(x-1\right)=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\left(y-1\right)\left(z-1\right)=12\\\left(z-1\right)\left(x-1\right)=8\end{matrix}\right.\)
Đến đây dễ rồi
Giải hệ phương trình; \(\left\{{}\begin{matrix}x^2+xy+y^2=1\\y^2+yz+z^2=7\\z^2+zx+x^2=14\end{matrix}\right.\)
Giải hệ: \(\left\{{}\begin{matrix}x^2y+y^2z+z^2x=1\\xy^2+yz^2+zx^2=1\\x^3+y^3+z^3=-3\end{matrix}\right.\)
Từ \(x^3+y^3+z^3=-3\)
\(\Leftrightarrow2x^3+2y^3+2z^3=-6\)
\(\Leftrightarrow2x^3+2y^3+2z^3=-3\left(x^2y+y^2z+z^2x\right)-3\left(xy^2+yz^2+zx^2\right)\)
\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+\left(y^3+3y^2z+3yz^2+z^3\right)+\left(z^3+3z^2x+3zx^2+x^3\right)=0\)
\(\Leftrightarrow\left(x+y\right)^3+\left(y+z\right)^3+\left(z+x\right)^3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+y+z+z+x=0\\x+y=y+z=z+x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)
Xét TH \(x=y=z\), thay vào pt thứ 3 của hệ, ta có \(3x^3=-3\Leftrightarrow x=-1\) \(\Rightarrow\left(x;y;z\right)=\left(-1;-1;-1\right)\). Thử lại vào 2 pt đầu, ta thấy rõ ràng không thỏa mãn.
Xét TH \(x+y+z=0\), ta sẽ có \(x^3+y^3+z^3=3xyz\) \(\Rightarrow xyz=-1\)
Thay vào pt đầu tiên của hệ, thu được \(x^2y+y^2z+z^2x=-xyz\) \(\Leftrightarrow x^2y+y^2z+z^2x+xyz=0\). Tương tự, ta có \(xy^2+yz^2+zx^2+xyz=0\). Cộng theo vế 2 pt này, ta được \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\). Ta xét TH \(x+y=0\). Do \(x+y+z=0\) nên \(z=0\) và \(x=-y\), không thỏa mãn pt thứ 3. Tương tự với 2 trường hợp còn lại.
Vậy hpt đã cho vô nghiệm.
Lấy (2) cộng (3) ta được
(4)
Lấy (1) - (4) ta được
Xét 2 TH rồi thay vào tìm được y và z
Nhớ tick nha
Lấy (2) cộng (3) ta được
(4)
Lấy (1) - (4) ta được
Xét 2 TH rồi thay vào tìm được y và z
Giải hệ phương trình :\(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\) trong đó x,y,z>0
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=5\\zx+z+x+1=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=10\end{matrix}\right.\) (1)
Nhân vế với vế: \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\) (2)
Chia vế cho vế của (2) cho từng pt của (1):
\(\Rightarrow\left\{{}\begin{matrix}z+1=5\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(1;0;4\right)\) (loại)
Hệ vô nghiệm do \(y>0\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+z=6\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=6\left(1\right)\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}\left(x+y+z\right)^2=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\\x^2+y^2+z^2=14\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14+2\left(xy+yz+xz\right)=36\\xy+yz-xz=7\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}xy+yz+xz=11\\xy+yz-xz=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}xy+yz=\frac{11+7}{2}=9\\xz=\frac{11-7}{2}=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y\left(x+z\right)=9\\x=\frac{2}{z}\end{matrix}\right.\)
=>\(y\left(\frac{2}{z}+z\right)=9\)
<=> \(y=\frac{9}{\frac{2}{z}+z}=\frac{9}{\frac{2+z^2}{z}}=\frac{9z}{2+z^2}\)
Thay \(x=\frac{2}{z},y=\frac{9z}{2+z^2}\) vào (1) có:
\(\frac{2}{z}+\frac{9z}{2+z^2}+z=6\)
<=> \(\frac{2\left(2+z^2\right)+9z^2+z^2\left(2+z^2\right)}{z\left(2+z^2\right)}=6\)
<=>\(4+2z^2+9z^2+2z^2+z^4=6z\left(2+z^2\right)\)
<=> \(z^4+13z^2+4-12z-6z^3=0\)
<=> \(z^4-3z^3+2z^2-3z^3+9z^2-6z+2z^2-6z+4=0\)
<=>\(z^2\left(z^2-3z+2\right)-3z\left(z^2-3z+2\right)+2\left(z^2-3z+2\right)=0\)
<=> \(\left(z^2-3z+2\right)^2=0\)
<=> \(z^2-3z+2=0\)<=> \(z\left(z-2\right)-\left(z-2\right)=0\)
<=> \(\left(z-1\right)\left(z-2\right)=0\)
=>\(\left[{}\begin{matrix}z=1\\z=2\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\frac{2}{z}=2,y=\frac{9z}{2+z^2}=3\\x=1,y=3\end{matrix}\right.\)
Vậy (x,y,z) \(\in\left\{\left(2,3,1\right),\left(1,3,2\right)\right\}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-x-y-1=-2\\yz-y-z-1=4\\zx-z-x-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=-2\\\left(y-1\right)\left(z-1\right)=4\\\left(z-1\right)\left(x-1\right)=1\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=2\\\dfrac{yz}{y+z}=4\\\dfrac{zx}{z+x}=3\end{matrix}\right.\)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )
Cộng từng vế của các pt lại với nhau , ta có :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)
\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)
\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=xy+yz+xz\\x^{2021}+y^{2021}+z^{2021}=3^{2022}\end{matrix}\right.\)
PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Nhận thấy VT\(\ge\)0 với mọi x,y,z
Dấu = xảy ra <=> x=y=z
Thay x=y=z vào pt (2) ta được:
\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)
\(\Rightarrow x=y=z=3\)
Vậy (x;y;z)=(3;3;3)
1)Giải hệ phương trình với \(x,y,z\in R\)
\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)
2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố
a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)
b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)
3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :
\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)
4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\), \(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:
a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn
b)\(r=r_1+r_2\)