\(\left\{\begin{matrix}x+xy+y=1\\y+yz+z=3\\z+zx+x=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left(x+1\right)\left(y+1\right)=2\left(1\right)\\\left(y+1\right)\left(z+1\right)=4\left(2\right)\\\left(z+1\right)\left(x+1\right)=8\left(3\right)\end{matrix}\right.\)
Lấy 2(1) - (2) ta được
\(2\left(x+1\right)\left(y+1\right)-\left(y+1\right)\left(z+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x-z+1\right)=0\)
\(\Leftrightarrow\left\{\begin{matrix}y=-1\\z=2x+1\end{matrix}\right.\)
Với y = -1 thì hệ vô nghiệm
Với z = 2x + 1 thì thế vô 3 được
\(\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với x = 1 thì
\(\Rightarrow\left\{\begin{matrix}y=0\\z=3\end{matrix}\right.\)
Với x = - 3 thì
\(\Rightarrow\left\{\begin{matrix}y=-2\\z=-5\end{matrix}\right.\)
\(\left\{\begin{matrix}x+xy+y=1\left(1\right)\\y+yz+z=3\left(2\right)\\z+zx+x=7\left(3\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\left(y+1\right)+\left(y+1\right)=2\\y\left(z+1\right)+\left(z+1\right)=4\\z\left(x+1\right)+\left(x+1\right)=8\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(y+1\right)\left(x+1\right)=2\left(1\right)\\\left(z+1\right)\left(y+1\right)=4\left(2\right)\\\left(x+1\right)\left(z+1\right)=8\left(3\right)\end{matrix}\right.\)(II)
Nhân theo vế: \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=2.4.8=64\)
\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\left(5\right)\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\left(6\right)\end{matrix}\right.\)
(5) và (II) \(\Leftrightarrow\left\{\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}z=-5\\x=-1\\y=-2\end{matrix}\right.\)
(6)và(II)\(\Leftrightarrow\left\{\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}z=3\\x=1\\y=0\end{matrix}\right.\)
Hệ \(\Leftrightarrow\left\{\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\)
nhân theo vế => (x+1)(y+1)(z+1)=8
\(\Rightarrow\left\{\begin{matrix}x+1=2\\y+1=1\\z+1=4\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)
vậy hệ có nghiệm x=1,y=0,z=3