giải phương trình sau:\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)
Giải phương trình :
\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)
Đặt: \(\hept{\begin{cases}x-7=a\\x-8=b\end{cases}\Rightarrow}2x-15=a+b\)
khi đó pt trở thành: \(a^4+b^4=\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(\Leftrightarrow4a^3b+6a^2b^2+4ab^3=0\)
\(\Leftrightarrow2ab\left(2a^2+3ab+2b^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ab=0\\2a^2+3ab+b^2=0\end{cases}}\)
TH1: \(ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-7=0\\x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=8\end{cases}}}\)
TH2: \(2a^2+3ab+2b^2=2\left(a^2+\frac{3}{2}ab+b^2\right)=2\left(a^2+2.a.\frac{3}{4}b+\frac{9}{16}b^2+\frac{7}{16}b^2\right)=2\left(a+\frac{3}{4}b\right)^2+\frac{7}{8}b^2\ge0\)Dấu = xảy ra <=> a=b=0
hay x-7=x-8=0 (vô nghiệm)
Vậy x=7 hoặc x=8 là nghiệm
GIẢI PHƯƠNG TRÌNH
\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4.\)
Giải phương trình:
\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4.\)
\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)
Đặt \(\hept{\begin{cases}x-7=a\\x-8=b\end{cases}\Rightarrow a+b=2x-15}\)
Ta có:
\(a^4+b^4=\left(a+b\right)^4\)
\(\Leftrightarrow2ab^3+3a^2b^2+2a^3b=0\)
\(\Leftrightarrow ab\left(2a^2+3ab+2b^2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\2a^2+3ab+b^2=0\end{cases}}\)
Với \(a=0\Rightarrow x=7\)
Với \(b=0\Rightarrow x=8\)
Với \(2a^2+3ab+b^2=0\) thì ta nhận xét thấy
\(2a^2+3ab+b^2\ge0\) nhưng dấu = không xảy ra nên phương trình này vô nghiệm.
Vậy ...
\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)
\(\Leftrightarrow\left(x-7\right)2^2+\left(x-8\right)2^2=\left(15-2x\right)2^2\)
\(\Leftrightarrow\left(2x-14\right)^2+\left(2x-16\right)^2=\left(30-4x\right)^2\)
\(\Leftrightarrow4x^2-56x+196+4x^2-64x+256=\left(30-4x\right)^2\)
\(\Leftrightarrow8x^2-120x+452=900-240x+16x^2\)
\(\Leftrightarrow8x^2-120x+452-900+240x-16x^2=0\)
\(\Leftrightarrow-8x^2+120x-448=0\)
\(\Leftrightarrow-\left(8x^2-120x+448\right)=0\)
tự làm tiếp nha
Chuyển (15-2x)^4 sang vế bên kia.
Đặt VT=f(x) (VT sau khi đã chuyển (15-2x)^4).
Xét dấu của f(x), nhận 2 nghiệm x=7 ; x=8.
Giải các phương trình sau:
a/ \(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
b/ \(\left(x+1\right)^4+\left(x-3\right)^4=82\)
c/ \(\left(4-x\right)^5+\left(x-2\right)^5=32\)
d/ \(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)
Giải phương trình:
\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)
Ai làm đúng mình tick cho
\(x-7=a;\text{ }x-8=b\)
\(a^4+b^4=\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4=a^4+b^4+4ab\left(a^2+b^2\right)+6a^2b^2\)
\(\Leftrightarrow2ab\left(2a^2+2b^2+3ab\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ab=0\\2\left(a+\frac{3b}{4}\right)^2+\frac{7}{8}b^2\end{cases}=0}\)
\(\Leftrightarrow\orbr{\begin{cases}ab=0\\a=b=0\end{cases}}\)
Giải các phương trình sau:
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\);
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\);
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\);
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\).
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\)
\(8 - x + 15 = 6 - 4x\)
\( - x + 4x = 6 - 8 - 15\)
\(3x = - 17\)
\(x = \left( { - 17} \right):3\)
\(x = \dfrac{{ - 17}}{3}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)
\( - 9 + 12u = - 45 + 6u\)
\(12u - 6u = - 45 + 9\)
\(u = \left( { - 36} \right):6\)
\(6u = - 36\)
\(u = - 6\)
Vậy nghiệm của phương trình là \(u = - 6\).
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)
\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)
\({x^2} + 6x + 9 - {x^2} - 4x = 13\)
\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy nghiệm của phương trình là \(x = 2\).
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)
\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)
\({y^2} - 25 - {y^2} + 4y - 4 = 5\)
\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)
\(4y = 34\)
\(y = 34:4\)
\(y = \dfrac{{17}}{2}\)
Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).
Giải các phương trình sau :
a) \(\left(\dfrac{13}{24}\right)^{3x+7}=\left(\dfrac{24}{13}\right)^{2x+3}\)
b) \(\left(4-\sqrt{15}\right)^{\tan x}+\left(4+\sqrt{15}\right)^{\tan x}=8\)
c) \(\left(\sqrt[3]{6+\sqrt{15}}\right)^x+\left(\sqrt[3]{7-\sqrt{15}}\right)^x=13\)
giải phương trình:
\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)
Đặt a=x-7\(\Leftrightarrow a-1=x-8\)
Vậy \(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\Leftrightarrow a^4+\left(a-1\right)^4=\left(1-2a\right)^4\Leftrightarrow a^4+a^4-2a^3+a^2-2a^3+4a^2-2a+a^2-2a+1=16a^4-16a^3+4a^2-16a^3+16a^2-4a+4a^2-4a+1\Leftrightarrow2a^4-4a^3+4a^2-4a+1=16a^4-32a^3+24a^2-8a+1\Leftrightarrow14a^4-28a^3+18a^2-4a=0\Leftrightarrow7a^4-14a^3+9a^2-2a=0\Leftrightarrow a\left(7a^3-14a^2+9a-2\right)=0\Leftrightarrow a\left(a-1\right)\left(7a^2-7a+2\right)=0\left(1\right)\)
Vì \(7a^2-7a+2>0\)
Vậy (1)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
_ a=0\(\Leftrightarrow x-7=0\Leftrightarrow x=7\)
_ a=1\(\Leftrightarrow x-7=1\Leftrightarrow x=8\)
Vậy S={7;8}
Giải bất phương trình sau:
\(\dfrac{\left(6-2x\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(2-x\right)^2}\le0\)
7,3, -6
ĐKXĐ: \(x\ne7;x\ne2\)
BPT \(\Leftrightarrow f\left(x\right)=\dfrac{\left(6-2x\right)^3\left(x+6\right)}{\left(x-7\right)^3}\le0\)
Lập bảng xét dấu ta có:
Từ đây ta thấy \(-6\le x\le3\) hoặc \(x>7\) thỏa mãn bất phương trình ban đầu.
Vậy...