Viết phương trình đường thẳng đi qua điểm M và chắn trên hai trục tọa độ 2 đoạn bằng nhau:
a, M(-4;10)
b, M(2;1)
Help me!!!
Viết phương trình đường thẳng \(\Delta\) đi qua điểm M(1;2) và chắn trên 2 trục tọa độ các đoạn bằng nhau
Giả sử đường thẳng cần tìm có phương trình dạng \(\frac{x}{a}+\frac{y}{b}=1\) với \(ab\ne0\) suy ra \(\frac{1}{a}+\frac{2}{b}=1\) (1) và \(\left|a\right|=\left|b\right|\) (2)
Từ (2) suy ra hoặc a=b hoặc a=-b.
- Khi a=b, thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}=1\Leftrightarrow a=3\)
Vậy \(\Delta:\frac{x}{3}+\frac{y}{3}=1\) hay \(x+y-3=0\)
- Khi a=-b thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}=1\Leftrightarrow a=-1\) vậy \(\Delta:\frac{x}{-1}+\frac{y}{1}=1\) hay \(x-y+1=0\)
Vậy ta tìm đươc 2 đường thẳng đi qua M và chắn trên 2 trục tọa độ các đoạn thẳng bằng nhau là
\(x+y-3=0\) và \(x-y+1=0\)
3> Cho điểm M ( 1 ; 2 ) lập phương trình của đường thẳng qua M và chắn trên hai trục tọa độ hai đoạn có độ dài bằng nhau .
Cho điểm \(M\left(1;2\right)\). Hãy lập phương trình của đường thẳng qua M và chắn trên hai trục tọa độ hai đoạn có độ dài bằng nhau ?
Lời giải
đường thẳng chắn trên hai trucj tọa đọ hai đoạn thẳng = nhau => Hệ số góc k=-1 hoặc 1
\(\left\{{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\) đi qua điểm M \(\left\{{}\begin{matrix}b=2-1=1\\b=2+1=3\end{matrix}\right.\)
Phương trình hệ số đường thẳng cần tìm
\(\begin{matrix}d1:y=x+1\\d2:y=-x+3\end{matrix}\)
Phương trình tổng quát
d1: x-y-1=0
d2:x+y-3=0
viết phương trình đường thẳng (d) đi qua giao điểm của 2 đường thẳng (d1) x+y-2=0 và (d2) 3x-4y+1=0 đồng thời chắn trên 2 trục tọa độ những đoạn bằng nhau
Viết phương trình mặt phẳng đi qua M(1;2;3) chắn trên ba trục tọa độ các đoạn thẳng có độ dài dương bằng nhau.
Giả sử mặt phẳng (P) cần tìm có phương trình dạng :
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
với \(abc\ne0\) thỏa mãn
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1\) (1)
Do (P) đi qua M và \(\left|a\right|=\left|b\right|=\left|c\right|\) (2)
(Do (P) chắn trên 3 trục tọa độ các đoạn thẳng có độ dài bằng nhau)
Từ (2) suy ra hoặc \(a=b=c\) hoặc \(a=-b=c\) hoặc \(a=b=-c\) hoặc \(b=c=-a\)
* Nếu \(a=b=c\), thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}=1\Leftrightarrow a=6\) do đó phương trình mặt phẳng (P) : \(\frac{x}{6}+\frac{y}{6}+\frac{z}{6}=1\) hay \(x+y+z-6=0\)
* Nếu \(a=-b=c\), thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}+\frac{3}{a}=1\Leftrightarrow a=2\) do đó phương trình mặt phẳng (P) : \(\frac{x}{2}-\frac{y}{2}+\frac{z}{2}=1\) hay \(x-y+z-2=0\)
* Nếu \(a=b=-c\), thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}-\frac{3}{a}=1\Leftrightarrow\) Vô nghiệm
* Nếu \(b=c=-a\), thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}-\frac{3}{a}=1\Leftrightarrow a=-4\) do đó phương trình mặt phẳng (P) : \(\frac{x}{-4}-\frac{y}{4}+\frac{z}{4}=1\) hay \(-x+y+z-4=0\)
Vậy qua điểm \(M\left(1;2;3\right)\) có 3 mặt phẳng tọa độ yêu cầu, đó là:
\(\left(P_1\right):x+y+z-6=0\) chắn trên 3 trục tọa độ các đoạn có độ dài bằng 6
\(\left(P_2\right):x-y+z-2=0\) chắn trên 3 trục tọa độ các đoạn có độ dài bằng 2
\(\left(P_3\right):-x+y+z-4=0\)chắn trên 3 trục tọa độ các đoạn có độ dài bằng 4
Phương trình tổng quát của mặt phẳng α đi qua điểm M(5;4;3) và chắn trên các trục tọa độ dương những đoạn bằng nhau là
A. x+y+z+12=0
B. x+y+z+12=0
C. x+y+z-12=0
D. x-y+2z-12=0
Bài 2: Cho hai đường thẳng y = 2x –1 và y = – x + 2
a) Tìm tọa độ giao điểm M của và .
b) Viết phương trình đường thẳng (d) qua M và cắt trục tung tại điểm có tung độ bằng 4.
c) Viết phương trình đường thẳng qua gốc tọa độ và song song với .
\(a,PTHDGD:2x-1=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow M\left(1;1\right)\\ b,\text{Gọi đt của }\left(d\right)\text{ là }y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=1\\0a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=4\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x+4\)
Phương trình đường thẳng d qua M( 1;4) và chắn trên hai trục toạ độ những đoạn bằng nhau là
A.x-y+ 3= 0
B.x-y-3= 0
C.x+ y - 5= 0
D.x+ y+ 5=0
Lời giải
Chọn C
Do M( 1; 4) thuộc góc phần tư thứ I nên để d chắn trên 2 trục tọa độ những đoạn bằng nhau thì đường thẳng d cần tìm song song với đường thẳng d: y= -x.vậy đường thẳng cần tìm có phương trình –(x-1) = y- 4 hay x+ y- 5= 0.
a. Viết phương trình đường thẳng đi qua gốc tọa độ O và điểm M(2;4)
b. Viết phương trình parabol dạng y= a.x^2 và đi qua điểm M(2;4)
c. Vẽ parabol và đường thẳng trên trong cùng một hệ trục tọa độ và tìm tọa độ giao điểm của chúng. Help me! Thanks :)