Giả sử mặt phẳng (P) cần tìm có phương trình dạng :
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
với \(abc\ne0\) thỏa mãn
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1\) (1)
Do (P) đi qua M và \(\left|a\right|=\left|b\right|=\left|c\right|\) (2)
(Do (P) chắn trên 3 trục tọa độ các đoạn thẳng có độ dài bằng nhau)
Từ (2) suy ra hoặc \(a=b=c\) hoặc \(a=-b=c\) hoặc \(a=b=-c\) hoặc \(b=c=-a\)
* Nếu \(a=b=c\), thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}=1\Leftrightarrow a=6\) do đó phương trình mặt phẳng (P) : \(\frac{x}{6}+\frac{y}{6}+\frac{z}{6}=1\) hay \(x+y+z-6=0\)
* Nếu \(a=-b=c\), thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}+\frac{3}{a}=1\Leftrightarrow a=2\) do đó phương trình mặt phẳng (P) : \(\frac{x}{2}-\frac{y}{2}+\frac{z}{2}=1\) hay \(x-y+z-2=0\)
* Nếu \(a=b=-c\), thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}-\frac{3}{a}=1\Leftrightarrow\) Vô nghiệm
* Nếu \(b=c=-a\), thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}-\frac{3}{a}=1\Leftrightarrow a=-4\) do đó phương trình mặt phẳng (P) : \(\frac{x}{-4}-\frac{y}{4}+\frac{z}{4}=1\) hay \(-x+y+z-4=0\)
Vậy qua điểm \(M\left(1;2;3\right)\) có 3 mặt phẳng tọa độ yêu cầu, đó là:
\(\left(P_1\right):x+y+z-6=0\) chắn trên 3 trục tọa độ các đoạn có độ dài bằng 6
\(\left(P_2\right):x-y+z-2=0\) chắn trên 3 trục tọa độ các đoạn có độ dài bằng 2
\(\left(P_3\right):-x+y+z-4=0\)chắn trên 3 trục tọa độ các đoạn có độ dài bằng 4