- Tìm số nguyên x để 25x+46 là tích của 2 số nguyên liên tiếp
CM 25x+46 ko phải là tích của 2 số nguyên liên tiếp với mọi số nguyên x
TÌm \(x\in Z\)để 25x+46 viết dưới dạng tích 2 số nguyên liên tiếp
Đặt \(a\) và \(a+1\) lần lượt là 2 thừa số của tích hai số nguyên liên tiếp(\(a\inℤ\))
Theo đề bài ta có:
\(25x+46=a\left(a+1\right)\)
\(\Leftrightarrow\left(25x+46\right)a=a^2\left(a+1\right)\)
\(\Leftrightarrow25ax+46a=a^3+a\)
\(\Leftrightarrow25ax+45a=a^3\)
\(\Leftrightarrow5a\left(x+9\right)=a^3\)
\(\Leftrightarrow5\left(x+9\right)=a^2\)
Vậy tập nghiệm \(S=\left\{x\inℤ|x=a^2\div5-9\right\}\left(a^2⋮5\right)\)
a | 0 | 5 | 10 | 15 |
x | -9 | -4 | 11 | 36 |
Biểu diễn x trên đồ thị hàm số: \(x=3a-9\left(đk:x\inℤ,x⋮5\right)\)
P/S: Không hiểu chỗ nào cứ hỏi mình:))
à ko mik lm sai r đợi chút nhé để mik lm lại
Tìm x thuộc z để 25x+46 là tích của 2 số tự nhiên liên tiếp
Co tồn tại x hay ko để 25x+26 là tích 2 số nguyên liên tiếp
Tìm các số nguyên x để 9x+5 là tích của hai số nguyên liên tiếp
Tìm \(n\in Z\)để \(25n+46\)viết được dưới dạng tích 2 số nguyên liên tiếp
a)cho 4 số lẻ liên tiếp CMR hiệu của tích 2 số cuối với tích 2 số đầu chia hết cho 16
b)cho 4 số nguyên liên tiếp hỏi tích của số ban đầu với số cuối nhỏ hơn tích giữa của 2 số giữa bao nhiêu đơn vị
c)cho 4 số nguyên liên tiếp giả sử tích của số đầu với số thứ 3 nhỏ hơn tích của số thứ 2 và số thứ 4 là 99 tìm bốn số nguyên đó
a,tìm x:(-1)+(-2)+...+x=-120 b,Số(-3)^20+1 có phải là tích của 2 số nguyên liên tiếp ko
a: =>1+2+...+x=120
=>x(x+1)/2=120
=>x(x+1)=240
=>\(x^2+x-240=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-240\right)=961>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-31}{2}=\dfrac{-32}{2}=-16\left(loại\right)\\x_2=\dfrac{-1+31}{2}=15\left(nhận\right)\end{matrix}\right.\)
1 .tìm số nguyên tố p sao cho p+2 và p+4 cũng là số nguyên tố
2, tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng cũng là số nguyên tố
3, tìm hai số tự nhiên lien tiếp sao cho tổng và tích của chúng cũng là số nguyên tố
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
1. Chứng minh rằng nếu các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) − 2y là số chính phương thì x = y.
2. Tìm các số nguyên dương n để n4 + 2n3 + 3n3 + 3n + 7 là số chính phương.
3. Tìm các số tự nhiên m,n thỏa mãn 2m + 3 = n2.
4. Tìm các số tự nhiên n để n2 + n + 2 là tích của k số nguyên dương liên tiếp với k ≥ 2.
5. Tìm các số tự nhiên n để 36n − 6 là tích của k số nguyên dương liên tiếp với k ≥ 2.
6. Tìm số tự nhiên n lớn nhất để 427 +4500 +4n là số chính phương.
7. Tìm các số nguyên tố p để 2p - 1 - 1 / p là số chính phương