tam giác ABC có AB= căn 18 vẽ BH vuông góc AC tại H biết rằng BH =3cm. tính góc BAC
Cho tam giác ABC có AB= Căn bậc hai của 18 (cm). Vẽ BH vuông góc với AC biết rằng BH=3cm. Tính góc BAC
Cho tam giác ABC, kẻ AH vuông góc BC tại H,(H năm giữa B và C). Hãy tính các cạnh AB, AC và chứng minh tam giác ABC vuông tại A nếu biết:
1) AH= căn bậc 2 của 3cm, BH = 1cm , CH= 3cm
2) AH= 1cm, BH= 1cm, CH= 1cm
Cho tam giác ABC vuông tại A, AB=3cm; AC=4cm
a)Tính BC
b)Vẽ AH vuông góc BC. TÍnh AH,BH,CH
c)Vẽ AD là phân giác góc BAC. Tính BD,DC
d)viết tỉ số lượng giác của góc B rồi suy ra tỉ số lượng giác góc C
a: Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC. Vẽ BH vuông góc với AC tại H. Biết AC = 9, BH = căn bậc của 32. Tính độ dài cạnh BC
Lời giải:
Áp dụng định lý Pitago:
$32=BH^2=AB^2-AH^2$
$CH^2=AC^2-AH^2=81-AH^2$
$\Rightarrow CH^2-32=81-AB^2$
hay $CH^2-32=81-(BC^2-AC^2)=81-(BC^2-81)=162-BC^2$
hay $CH^2=194-BC^2=194-(\sqrt{32}+CH)^2$
$2CH^2+2\sqrt{32}CH+32=194$
$2CH^2+2\sqrt{32}CH-162=0$
$\Rightarrow CH=\sqrt{89}-2\sqrt{2}$ (do $CH>0$)
$\Rightarrow BC=CH+BH=\sqrt{89}-2\sqrt{2}+\sqrt{32}\sqrt{89}+2\sqrt{2}$
độ, AB= AC, AM là tia phân giác của góc BAC( M thuộc BC).
a, CM: tam giác ABM= tam giác ACM.
b, CM: AM vuông góc với BC. Tính số đo góc ABM.
c, Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K. Gọi I là giao điểm của BH và CK. CMR: BH= CK, BI= CI.
d, CM 3 điểm A,M,I thẳng hàng.
Cho tam giác ABC vuông tại A, AB=3cm ,AC=4cm,
a giải tam giác ABC
b kẻ đường cao AH. Tính AH,BH,CH
c cho AD là đường phân giác của góc BAC từ D vẽ đường vuôn góc qua AC (F thuộc AC) tính DF
\(BC=\sqrt{3^2+4^2}=5\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)
\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)
1. Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: tam giác AHK cân.
b)Chứng minh rằng: BH=CK
c)Tính AH, BH biết AB = 9cm, AC = 12cm.
bài này khó quá
Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???
. Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: tam giác AHK cân.
b)Chứng minh rằng: BH=CK
c)Tính AH, BH biết AB = 9cm, AC = 12cm.
a, Gọi D vuông góc với phân giác của BAC tại điểm O
Xét △ADH và △ADK cùng vuông tại D
Có: HAD = KAD (gt)
=> △ADH = △ADK (cgv-gnk)
=> AH = AK (2 cạnh tương ứng)
=> △AHK cân tại A
b, Vẽ BI // CK (I HK)
=> AKH = BIH (2 góc đồng vị)
Mà AHK = AKH (△AHK cân tại A)
=> BIH = AHK
=> BIH = BHI
=> △BHI cân tại B
=> BH = BI
Xét △OBI và △OCK
Có: BOI = COK (2 góc đối đỉnh)
OB = OC (gt)
OBI = OCK (BI // CK)
=> △OBI = △OCK (g.c.g)
=> BI = CK (2 cạnh tương ứng)
Mà BH = BI (cmt)
=> BH = CK
c, Ta có: AH = AB + BH , AK = AC - KC
=> AH + AK = AB + BH + AC - KC
=> AH + AH = (AB + AC) + (BH - KC) (AK = AH)
=> 2AH = AB + AC (BH = KC => BH - KC = 0)
=> AH = (AB + AC) : 2 = (9 + 12) : 2 = 10,5 (cm)
=> BH = AH - AB = 10,5 - 9 = 1,5 (cm)
{\displaystyle \in }