Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Dũng
Xem chi tiết
Lê Yến Nhi
Xem chi tiết
Hatake Kakashi
Xem chi tiết
Phạm Hồ Thanh Quang
Xem chi tiết
alibaba nguyễn
20 tháng 6 2017 lúc 10:44

\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)

\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)

Thiên Ân
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết

<=> \(\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

<=>\(\frac{x-ab-ac-bc}{a+b}+\frac{x-ab-ac-bc}{a+c}+\frac{x-ab-ac-bc}{b+c}=0\)

<=>\(\left(x-ab-ac-bc\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

Vì \(a\ne-b;b\ne-c;c\ne-a\) nên tổng 3 phân số kia khác 0

=> (x-ab-ac-ca)=0

=>x=ab+ac+ca

Khách vãng lai đã xóa
Tùng Nguyễn Văn
Xem chi tiết
Đỗ Chi
Xem chi tiết
Nguyễn Thành Trương
22 tháng 1 2020 lúc 20:36

\(\begin{array}{l} \dfrac{{x - b - c}}{a} + \dfrac{{x - c - a}}{b} + \dfrac{{x - a - b}}{c} = 3\\ \Leftrightarrow \left( {\dfrac{{x - b - c}}{a} - 1} \right) + \left( {\dfrac{{x - c - a}}{b} - 1} \right) + \left( {\dfrac{{x - a - b}}{c} - 1} \right) = 3 - 1 - 1 - 1\\ \Leftrightarrow \dfrac{{x - a - b - c}}{a} + \dfrac{{x - a - b - c}}{b} + \dfrac{{x - a - b - c}}{c} = 0\\ \Leftrightarrow \left( {x - a - b - c} \right)\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right) = 0\\ \Leftrightarrow x - a - b - c = 0\\ \Leftrightarrow x = a + b + c \end{array}\\ \boxed{NTT}\)

Khách vãng lai đã xóa
Ngô Hoài Thanh
Xem chi tiết