Tính tổng các số sau (a\(\ne\)b\(\ne\)c và \(\ne\)0) ab+ba+ac+ca+bc+cb biết a+b+c=12
Tính tổng các số sau (a\(\ne\)b\(\ne\)c và \(\ne\)0)
ab+ba+ac+ca+bc+cb biết a+b+c=12
Chứng minh rằng nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{4}=\frac{ca+cb}{4}\) và a, b, c ≠ 0 thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Tìm a,b,c \(\ne\)0 thỏa mãn a+b+c = \(\frac{ab+ac}{2}\)= \(\frac{ba+bc}{3}\)= \(\frac{ca+cb}{4}\)
Cho a + b + c = 1; a + b \(\ne\)0; b + c \(\ne\)0; c + a \(\ne\)0. Tính: P = \(\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)
\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)
Cho ba số a , b , c thỏa mãn \(c^2+2\left(ab-bc-ac\right)=0;b\ne c\)và \(a+b\ne c\)
Chứng minh rằng : \(\frac{2a^2-2a+c^2}{2b^2-2bc+b^2}=\frac{a-c}{b-c}\)
Tìm x biết : \(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) với \(a\ne-b;b\ne-c;c\ne-a\)
<=> \(\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)
<=>\(\frac{x-ab-ac-bc}{a+b}+\frac{x-ab-ac-bc}{a+c}+\frac{x-ab-ac-bc}{b+c}=0\)
<=>\(\left(x-ab-ac-bc\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)
Vì \(a\ne-b;b\ne-c;c\ne-a\) nên tổng 3 phân số kia khác 0
=> (x-ab-ac-ca)=0
=>x=ab+ac+ca
\(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}vớia\ne-b;b\ne-c;c\ne-a\)
cho a,b,c ≠ 0 và (ab +bc +ca) ≠0 . Giải phương trình ẩn X
x-b-c/a + x-c-a/b + x-a-b /c =3
\(\begin{array}{l} \dfrac{{x - b - c}}{a} + \dfrac{{x - c - a}}{b} + \dfrac{{x - a - b}}{c} = 3\\ \Leftrightarrow \left( {\dfrac{{x - b - c}}{a} - 1} \right) + \left( {\dfrac{{x - c - a}}{b} - 1} \right) + \left( {\dfrac{{x - a - b}}{c} - 1} \right) = 3 - 1 - 1 - 1\\ \Leftrightarrow \dfrac{{x - a - b - c}}{a} + \dfrac{{x - a - b - c}}{b} + \dfrac{{x - a - b - c}}{c} = 0\\ \Leftrightarrow \left( {x - a - b - c} \right)\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right) = 0\\ \Leftrightarrow x - a - b - c = 0\\ \Leftrightarrow x = a + b + c \end{array}\\ \boxed{NTT}\)
Tính giá trị của biểu thức:
\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)khi a+b+c=1 và \(a\ne-b;b\ne-c;c\ne-a\).