Tìm m để hệ sau có vô số nghiệm
4x - y = 3
mx + y =-3
1) tìm m để các hệ phương trình sau vô số nghiệm a){4x-y=3;mx+y=-3} , b){ x+2y=m;3x+6y=12
1) tìm m để các hệ phương trình sau vô số nghiệm a){4x-y=3;mx+y=-3} , b){ x+2y=m;3x+6y=12
cho hệ phương trình \(\left\{{}\begin{matrix}4x-my-m-6=0\\mx-y-2m=0\end{matrix}\right.\)
tìm m để : a. hệ phương trình vô nghiệm
b. hệ phương trình có nghiệm duy nhất
c. hệ phương trình có vô số nghiệm
1: mx+y=2m+2 và x+my=11
Khi m=-3 thì hệ sẽ là:
-3x+y=-6+2=-4 và x-3y=11
=>-3x+y=-4 và 3x-9y=33
=>-8y=29 và 3x-y=4
=>y=-29/8 và 3x=y+4=3/8
=>x=1/8 và y=-29/8
2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)
=>m^2<>1
=>m<>1 và m<>-1
Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)
=>(m=1 hoặc m=-1) và (11m=2m+2)
=>\(m\in\varnothing\)
Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11
=>m=1 hoặc m=-1
Bài 5 : Cho hệ phương trình : x+y=3 và -mx - y = 2m
Xác định m để hệ phương trình có một nghiệm ? Vô nghiệm ? Vô số nghiệm ?
`{(x+y=3),(-mx-y=2m):}`
`<=>{(x=3-y),(-m(3-y)-y=2m):}`
`<=>{(x=3-y),(my-3m-y=2m):}`
`<=>{(x=3-y),(m(y-1)=5m):}`
Hệ phương có 1 nghiệm
`<=>m\ne0`
Hệ phương trình vô nghiệm(ax=b vô nghiệm khi a=0 và `b\ne0`)
`<=>{(m=0),(m\ne0):}` vô lý
Hệ phương trình có vô số nghiệm(ax=b vô số nghiệm khi a=0 và `b=0`)
`<=>{(m=0),(m=0):}<=>m=0`
Cho hệ phương trình x+y=3 và -mx-y=2m.Xác định m để hệ phương trình có 1 ngiệm?Vô nghiệm?Vô số nghiệm?
cho hệ 3x-y=6 và mx+y=n+3 tìm m n để hệ có ngiệm duy nhất,vô nghiệm
cho hệ phương trình (m là than số):
\(\left\{{}\begin{matrix}3x+y=3\\mx+y=3\end{matrix}\right.\)
tìm m để hệ phương trình vô nghiệm
\(\left\{{}\begin{matrix}3x+y=3\\mx+y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-mx=0\\3x+y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3-m\right)x=0\\3x+y=3\end{matrix}\right.\)
Muốn hệ phương trình vô nghiệm, cần:
\(\left(3-m\right)x\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\m\ne3\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
y=3-3x\\
mx+y=3\end{matrix}\right.\Rightarrow mx+3-3x=3\)
$\Leftrightarrow x(m-3)=0(*)$
Để hpt vô nghiệm thì $(*)$ vô nghiệm $x$
Điều này vô lý vì $(*)$ luôn có nghiệm $x=0$
Do đó không tồn tại $m$ để hpt vô nghiệm.
tìm m để hệ phương trinhg hệ phương trình \(\hept{\begin{cases}\\\end{cases}}4x-m=2\\
mx-y=1\)
a)có nghiêm duy nhất
b) vô số nghiệm
c)vô nghiệm
bài tập: cho hệ phương trình \(\left\{{}\begin{matrix}x+my=1\\\\mx+y=1\end{matrix}\right.\) (m là tham số )
a, Giaỉ hệ phương trình khi m=1,m=-1,m=2
b,Tìm m để hệ phương trình đã cho
b.1, có nghiệm duy nhất
b.2,vô nghiệm
b.3,có vô số nghiệm
c,Tìm m để hệ có nghiệm duy nhất \(x+2y=3\)
thankyou
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)
Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.
Khi $m=-1$ thì hệ trở thành:
\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)
Vậy HPT vô nghiệm
Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)
Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........
b)
PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:
$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$
b.1
Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$
$\Leftrightarrow m\neq \pm 1$
b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$
$\Leftrightarrow m=-1$
b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$
$\Leftrightarrow m=1$
c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$
$x=1-my=\frac{1}{m+1}$
Thay vào $x+2y=3$ thì:
$\frac{3}{m+1}=3\Leftrightarrow m=0$