cho tổng S = a+a^2 +a^3+..........+a^n với giá trị nào của n để S chia hết cho a+1
cho tổng S =a +a^2+a^3+a^4+...+a^n .với giá trị nào của n thì S chia hết cho a+1
Ta thấy:
\(a+a^2=a.\left(a+1\right)⋮a+1\)
\(a^3+a^4=a^3.\left(a+1\right)⋮a+1\)
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Ta thấy:
a+a^2=a.\left(a+1\right)⋮a+1
a^3+a^4=a^3.\left(a+1\right)⋮a+1
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Cho tổng S=a+a^2+a^3+a^4+...+a^n. Với giá trị nào của n thì S chia hết cho a+1(a khác 0)
Cho tổng S= a+a^2+a^3+a^4+...+a^n (n thuộc N)
Với giá trị nào của n thì S chia hết cho a+1
Ta thấy:
a+a^2=a.\left(a+1\right)⋮a+1
a^3+a^4=a^3.\left(a+1\right)⋮a+1
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Cho tổng S = \(a+a^2+a^3+...+a^n\left(n\in N\right)\)với giá trị nào của n để S chia hết cho a+1 (\(a\ne-1\))
Lời giải:
Nếu $n$ lẻ thì:
$S=a+(a^2+a^3)+(a^4+a^5)+....+(a^{n-1}+a^n)$
$=a+a^2(1+a)+a^4(1+a)+....+a^{n-1}(1+a)$
$=a+(1+a)(a^2+a^4+....+a^{n-1})$
$=(a+1)+(1+a)(a^2+a^4+...+a^{n-1})-1$
$=(a+1)(1+a^2+a^4+...+a^{n-1})-1\not\vdots a+1$
Nếu $n$ chẵn thì:
$S=(a+a^2)+(a^3+a^4)+....+(a^{n-1}+a^{n})$
$=a(1+a)+a^3(1+a)+....+a^{n-1}(1+a)$
$=(1+a)(a+a^3+...+a^{n-1})\vdots a+1$
Vậy với giá trị $n$ chẵn thì yêu cầu đề bài được thỏa mãn.
Cho tổng: S= a+ a2+ a3+ ......+an ( n khác 0 )
Với giá trị nào của n thì S chia hết cho a+1
Cho S=a+a^2+a^3+...+a^n với giá trị nào của S chia hết cho a+1(a ko =-1)
cho S= a+a^2+a^3+...+a^n ( n thuộc N ). Với giá trị nào thì S chia hết cho a+1 (a khác -1)
cho tổng S =a +a^2+a^3+a^4+...+a^n vơi giá trị nào của n thì S chia hết cho a+1
help me ! Ngày mai nộp bài rồi
cho tổng S =a +a^2+a^3+a^4+...+a^n .với giá trị nào của n thì S chia hết cho a+1