\(C=2^2+5^2+8^2+....+\left(3n-1\right)^2\)
\(\frac{1}{\left(3n+2\right)\left(3n+5\right)}=\frac{3n+5-3n-2}{\left(3n+2\right)\left(3n+5\right)}=\frac{3}{\left(3n+2\right)\left(3n+5\right)}giainhuthedungko\)sai sử giúp nhé thank
Chắc có lẽ bạn định làm như này:
\(\frac{1}{\left(3n+2\right)\left(3n+5\right)}=\frac{3}{3\left(3n+2\right)\left(3n+5\right)}=\frac{\left(3n+5\right)-\left(3n+2\right)}{3\left(3n+2\right)\left(3n+5\right)}=\frac{1}{3}\left[\frac{1}{3n+2}-\frac{1}{3n+5}\right]\)
Chứng minh rằng với mọi n thuộc Z thì :
a) \(\left(n^2+3n-1\right).\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
c) \(\left(2n-1\right).3-\left(2n-1\right)⋮8\)
d) \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Tìm các giới hạn sau:
a) \(lim\left(4^n-3^n\right)\)
b) \(lim\left[\left(2^n+1\right)^2-4^n\right]\)
c) \(lim\left(\sqrt{2n^5-3n^2+11}-n^3\right)\)
d) \(lim\left(\sqrt{2n^2+1}-\sqrt{3n^2-1}\right)\)
e) \(lim\sqrt{n^2+3n\sqrt{n}+1}-n\)
\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)
\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)
\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)
\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)
Chứng minh rằng: \(2+5+8+...+\left(3n-1\right)=\frac{n\left(3n+1\right)}{2}\)
n=1=> đẳng thức đúng
giả sử có số n=a thoả mãn pt=>
2+5+8+....+(3a-1)=a(3a+1)/2=(3a^2+a)/2(1)
phải chứng minh n=a+1 thoả mãn pt:
2+5+8+......+(3a+2)=(a+1)(3a+4)/2=(3a^2+7a+4)/2(2)
lấy (2) trừ (1) ta được:
(6a+4)/2=3a+2
=> 0=0 (đúng vs mọi a)
=> đẳng thức (2) đúg, dpcm
Đặt A = 2 + 5+ ....... + (2n - 1)
Số các số hạng là:
(3n - 1 - 2)/3 + 1 = (3n - 3)/3 + 1 = n - 1 + 1 = n
A = n x (3n -1 + 2) : 2
A = \(\frac{n\left(3n+1\right)}{2}\) => DPCM
Tìm các giới hạn sau:
\(a,\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)
\(b,\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)
\(a,lim\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)
\(=lim\dfrac{4-\dfrac{3}{n^3}}{\left(3-\dfrac{2}{n^2}\right)\left(\dfrac{1}{n^3}-4\right)}\)
\(=\dfrac{4-0}{\left(3-0\right)\left(0-4\right)}=\dfrac{4}{-12}=-\dfrac{1}{3}\)
\(\lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}=\lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(1-\dfrac{10}{n}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(3-\dfrac{3}{n}\right)^3}=\dfrac{1.1^2}{1.3}=\dfrac{1}{3}\)
\(1,\left(n+2\right)⋮\left(n+1\right)\)
2 ,\(8⋮\left(n-2\right)\)
3,\(\left(2n+1\right)⋮\left(6-n\right)\)
4;\(3n⋮\left(n-1\right)\)
5, \(\left(3n+5\right)⋮\left(2n+1\right)\)
6, \(\left(3n+1\right)⋮\left(2n-1\right)\)
Chứng minh rằng: \(2+5+8+...+\left(3n-1\right)=\frac{n\left(3n+1\right)}{2}\)
Chứng minh rằng với \(n\in N^{\circledast}\), ta có các đẳng thức :
a) \(2+5+8+.....+3n-1=\dfrac{n\left(3n+1\right)}{2}\)
b) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{2^n}=\dfrac{2^n-1}{2^n}\)
c) \(1^2+2^2+3^2+....+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2
Vậy hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là
Sk= 2 + 5 + 8 + …+ 3k – 1 =
Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh
Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =
Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.
Đặt vế trái bằng Sn.
Giả sử hệ thức đúng với n = k ≥ 1, tức là
Ta phải chứng minh .
Thật vậy, từ giả thiết quy nạp, ta có:
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*
c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử hệ thức c) đúng với n = k ≥ 1, tức là
Sk = 12 + 22 + 32 + …+ k2 =
Ta phải chứng minh
Thật vậy, từ giả thiết quy nạp ta có:
Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)
(đpcm)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
\(Tính:C=2^2+5^2+8^2+...+\left(3n-1\right)^2\)