Chứng minh rằng với mọi n thuộc Z thì :
a) \(\left(n^2+3n-1\right).\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
c) \(\left(2n-1\right).3-\left(2n-1\right)⋮8\)
d) \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
Chứng minh vs mọi n thuộc Z thì:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
tìm tất cả các số nguyên n thỏa mãn các đẳng thức sau
\(5^3\cdot25^n=5^{3n}\)
\(a^{\left(2n+6\right)\cdot\left(3n-9\right)}=1\)
\(\dfrac{1}{3}\cdot3^n=7\cdot3^2\cdot9^2-2\cdot3^n\)
cho \(C=\frac{m^3+3n^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\) với \(m\in N\) . chứng minh: C là số hữu tỉ
Bài 4.1: Tìm x, biết
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9\right|=5\)
c) \(\left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
8) \(\dfrac{17}{-26}.\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}.\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}.\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
Tìm nghiệm của đa thức:
\(B=x+2\left(x+1\right)^2-2\)
\(C=x^4.\left(x+2\right)-x^2\)
\(D=3\left|x+2\right|+6\left(x+2\right)^8+6\)
\(H=4\left(x+5\right)^2-2\left|x+3\right|+12\)
tính\(\left[\frac{\left(4,6+5.6,25\right).14}{4.0,125+2,3}:\frac{17}{6}\right]:\frac{27.9\frac{3}{5}}{12,4+4\frac{2}{5}}+\left(4\frac{5}{8}-\frac{13}{6}:8\frac{2}{3}\right):\left(3,25:2\frac{1}{4}\right)\)
Tìm x biết:
a) |x| + 32 = 22 + (1/2)3
b) (2x + 1)3 = - 8
c) \(5-\left|x+\frac{1}{2}\right|=2^2-\left(\frac{1}{2}\right)^3\)