Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 11:51

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

Hà Văn Lâm
Xem chi tiết
Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

lukaku bình dương
Xem chi tiết
HT.Phong (9A5)
10 tháng 8 2023 lúc 11:27

b) \(A=3+3^2+3^3+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)

\(A=13\cdot\left(3+3^4+...+3^{58}\right)\)

Vậy A chia hết cho 13

HT.Phong (9A5)
10 tháng 8 2023 lúc 11:25

a) \(A=3+3^2+...+3^{60}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)

Nên A chia hết cho 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2019 lúc 5:37

S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9      =   3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9      = 39 + 3 3   .   39   +   3 6   .   39      = 39 . 1 + 3 3 + 3 6   ⋮   − 39  

Vậy S chia hết cho -39

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2017 lúc 17:50

S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9      =   3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9      = 39 + 3 3   .   39   +   3 6   .   39      = 39. 1 + 3 3 + 3 6   ⋮   − 39  

Vậy S chia hết cho -39

Sara Nga
Xem chi tiết
HT.Phong (9A5)
15 tháng 10 2023 lúc 18:31

\(3+3^2+...+3^{2022}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)

\(=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2020}\cdot\left(1+3+9\right)\)

\(=3\cdot13+3^4\cdot13+...+3^{2020}\cdot13\)

\(=13\cdot\left(3+3^4+...+3^{2020}\right)\) ⋮ 13 

Vậy.... 

An Bùi
Xem chi tiết
Minh Hiếu
24 tháng 9 2021 lúc 15:58

a) B\(=\) 3 + 32 + 3+ ... + 360 

\(=\)(3+32)+(33+34)+...+(359+360)

\(=\)3(1+3)+33(1+3)+...+359(1+3)

\(=\)(3+1)(3+33+...+359)

\(=\)4(3+33+...+359)⋮4

⇒B⋮4

b) B\(=\)(3+32+33)+...+(358+359+360)

\(=\)30(3+32+33)+...+357(358+359+360)

\(=\)3+32+33(30+33+36+...+357)

\(=\)39(30+33+36+...+357)⋮13

⇒ B⋮13

Xem chi tiết
Đoàn Trần Quỳnh Hương
30 tháng 12 2022 lúc 14:53

Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;

Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.

Hồng Duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 11:17

\(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)