biet tan a = 2. tính biểu thức sau:
A=sin^2 a+2.sin a.cos a-3cos^2 a
Rút gọn biểu thức sau: P= 1-sin^ 2 a.cos^ 2 a sin^ 2 a -sin^ 2 a
Biết tan a= 2. Tính giá trị biểu thức sau:
A= sin2a + 2sin a. cos a -3cos2 a
\(\hept{\begin{cases}sin^2a+c\text{os}^2a=1\\sina=2cosa\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}sina=\frac{2}{\sqrt{5}}\\c\text{os}a=\frac{1}{\sqrt{5}}\end{cases}}\)hoặc \(\orbr{\begin{cases}sina=-\frac{2}{\sqrt{5}}\\c\text{os}a=-\frac{1}{\sqrt{5}}\end{cases}}\)
Thế vô đi
cho tan a =2.tính giá trị biểu thức
A=(2cos a + sin a)/(sin a - 3cos a)
help me!!!!!!mình đang cần gấp
a) cho sin a = \(\frac{2}{3}\) . Tính giá trị của biểu thức P = tan2 a - 2 cot2 a
b) cho sin a.cos a =\(\frac{2\sqrt{2}}{9}\). tính giá trị đúng của biểu thức M = \(\frac{1}{\tan a+\cot a}\)
đơn giản biểu thức : sin a - sin a.cos\(^2\)a
cho tan\(\alpha\)=2.Tính giá trị của biểu thức A=\(\dfrac{4sin^2\alpha+3cos\alpha sin\alpha}{5sin^2\alpha-2cos^2\alpha}\)
Ta có: \(tan\alpha=2\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}=2\Leftrightarrow sin\alpha=2cos\alpha\)
A = \(\dfrac{16cos^2\alpha+6cos^2\alpha}{20cos^2\alpha-2cos^2\alpha}=\dfrac{22cos^2\alpha}{18cos^2\alpha}=\dfrac{11}{9}\)
a) cho sin a = \(\frac{2}{3}\) . Tính giá trị của biểu thức P = tan2 a - 2 cot2 a
b) cho sin a.cos a =\(\frac{2\sqrt{2}}{9}\). tính giá trị đúng của biểu thức M = \(\frac{1}{\tan a+\cot a}\)
a/ \(cos^2a=1-sin^2a=\frac{5}{9}\)
\(P=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=-\frac{17}{10}\)
b/ \(M=\frac{1}{\frac{sina}{cosa}+\frac{cosa}{sina}}=\frac{1}{\frac{sin^2a+cos^2a}{sina.cosa}}=sina.cosa=\frac{2\sqrt{2}}{9}\)
Cho \(tan\alpha=\sqrt{2}\) và biểu thức \(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\). Tính tổng \(a+b\):
A. \(5\)
B. \(0\)
C. \(1\)
D. \(3\)
Cách 1:
Ta có: \(tan\alpha=\sqrt{2}\Rightarrow\left\{{}\begin{matrix}\dfrac{sin\alpha}{cos\alpha}=\sqrt{2}\\1+\left(\sqrt{2}\right)^2=\dfrac{1}{cos^2\alpha}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=\sqrt{2}\cdot cos\alpha\\cos^2\alpha=\dfrac{1}{3}\end{matrix}\right.\)
\(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
\(=\dfrac{\sqrt{2}\cdot cos\alpha-cos\alpha}{\left(\sqrt{2}\cdot cos\alpha\right)^3+3cos^3\alpha+2\cdot\sqrt{2}\cdot cos\alpha}\)
\(=\dfrac{cos\alpha\left(\sqrt{2}-1\right)}{2\sqrt{2}\cdot cos^3\alpha+3cos^3\alpha+2\sqrt{2}\cdot cos\alpha}\)
\(=\dfrac{cos\alpha\left(\sqrt{2}-1\right)}{cos\alpha\left(2\sqrt{2}\cdot cos^2\alpha+3cos^2\alpha+2\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{2}-1}{2\sqrt{2}\cdot cos^2\alpha+3cos^2\alpha+2\sqrt{2}}\)
Thay \(cos^2\alpha=\dfrac{1}{3}\) vào \(P\) ta có:
\(P=\dfrac{\sqrt{2}-1}{2\sqrt{2}\cdot\dfrac{1}{3}+3\cdot\dfrac{1}{3}+2\sqrt{2}}=\dfrac{\sqrt{2}-1}{1+\dfrac{8}{3}\sqrt{2}}\)
\(=\dfrac{3\left(\sqrt{2}-1\right)}{3\left(1+\dfrac{8}{3}\sqrt{2}\right)}=\dfrac{3\left(\sqrt{2}-1\right)}{3+8\sqrt{2}}\)
\(=\dfrac{3\left(\sqrt{2}-1\right)}{3+2^3\sqrt{2}}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Rightarrow a+b=5\)
Chọn đáp án A.
Cách 2:
\(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}=\dfrac{\left(sin\alpha-cos\alpha\right)\div cos^3\alpha}{\left(sin^3\alpha+3cos^3\alpha+2sin\alpha\right)\div cos^3\alpha}\)
\(=\dfrac{\dfrac{sin\alpha}{cos^3\alpha}-\dfrac{1}{cos^2\alpha}}{\dfrac{sin^3\alpha}{cos^3\alpha}+3+2\cdot\dfrac{sin\alpha}{cos^3\alpha}}=\dfrac{\dfrac{sin\alpha}{cos\alpha}\cdot\dfrac{1}{cos^2\alpha}-\dfrac{1}{cos^2\alpha}}{tan^3\alpha+3+2\cdot\dfrac{sin\alpha}{cos\alpha}\cdot\dfrac{1}{cos^2\alpha}}\)
\(=\dfrac{tan\alpha\cdot\left(1+tan^2\alpha\right)-\left(1+tan^2\alpha\right)}{tan^3\alpha+3+2tan\alpha\cdot\left(1+tan^2\alpha\right)}\)
Thay \(tan\alpha=\sqrt{2}\) vào ta có:
\(P=\dfrac{\sqrt{2}\cdot\left[1+\left(\sqrt{2}\right)^2\right]-\left[1+\left(\sqrt{2}\right)^2\right]}{\left(\sqrt{2}\right)^3+3+2\sqrt{2}\cdot\left[1+\left(\sqrt{2}\right)^2\right]}=\dfrac{3\sqrt{2}-3}{2\sqrt{2}+3+6\sqrt{2}}\)
\(=\dfrac{3\left(\sqrt{2}-1\right)}{3+8\sqrt{2}}=\dfrac{3\left(\sqrt{2}-1\right)}{3+2^3\sqrt{2}}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Rightarrow a+b=3+2=5\)
Chọn đáp án A
Biết \(\tan\alpha=2\)Tính giá trị biểu thức
\(A=sin^2\alpha+2.sin\alpha.cos\alpha-3cos^2\alpha\)
\(1+\tan^2\alpha=\dfrac{1}{\cos^2a}\)
\(\Rightarrow\cos^2\alpha=\dfrac{1}{1+\tan^2\alpha}=\dfrac{1}{5}\)
\(2=\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(\Rightarrow\sin\alpha=2\cos\alpha\)
\(A=\sin^2\alpha+2\sin\alpha\times\cos\alpha-3\cos^2\alpha\)
\(=4\cos^2\alpha+4\cos^2\alpha-3\cos^2\alpha\)
\(=5\cos^2\alpha\)
= 1