Tìm giá trị nhỏ nhất:
A=3.\(\left|1-2x\right|\)-5
Tìm giá trị nhỏ nhất:
a) A= \(\left|3,4-x\right|+1,7\)
b) B= \(\left|x+48\right|3,5\)
c) C= \(\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
\(a,A=\left|3,4-x\right|+1,7\ge1,7\)
Dấu \("="\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)
\(c,C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}4x-3=0\\5y+7,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Tìm giá trị nhỏ nhất:
A= | 2x+1| - |-3/4|
có lời giải chi tiết ạ
A=|2x+1|-3/4>=-3/4
Dấu = xảy ra khi x=-1/2
Tìm giá trị nhỏ nhất:A=|2x+4|+|y-2|+5
Tìm giá trị nhỏ nhất của\(\frac{\left(4x^5+2x^4+4x^3-x-1\right)}{\left(2x^3+x-1\right)}\)
Tìm giá trị nhỏ nhất của thương
\(\left(4x^5+2x^4+4x^3-x-1\right):\left(2x^3+x-1\right)\)
Theo mk nghĩ thì đề bài fải như thế này:
\(\left(4x^5+2x^4+4x^3-x^2-1\right):\left(2x^3+x-1\right)\)
Kết quả của phép chia trên là: \(2x^2+x+1\)
Ta có: \(2x^2+x+1=2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)\)
\(=2\left(x^2+\frac{1}{2}x+\frac{1}{16}+\frac{7}{16}\right)\)
\(=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall x\)
=> Min = 7/8 tại \(2\left(x+\frac{1}{4}\right)^2=0\Rightarrow x=-\frac{1}{4}\)
=.= hok tốt!!
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất:
a) \(y=3-\dfrac{4}{3+2sinx}\)
b) \(y=\dfrac{2}{5-4cosx}\)
c) \(y=2cos^2x-1\)
d) \(y=3-4sin^22x\)
e) \(y=\sqrt{3-2sinx}\)
f) \(y=\dfrac{5}{\sqrt{5-4sinx}}\)
g) \(y=\dfrac{4}{4-\sqrt{5+4cosx}}\)
h) \(y=sinx-cosx-2\)
i) \(y=\sqrt{3}cosx-sinx+3\)
j) \(y=4cos^2x-4cosx+5\)
a: -1<=sin x<=1
=>-1+3<=sin x+3<=1+3
=>2<=sinx+3<=4
=>\(\dfrac{1}{2}>=\dfrac{1}{sinx+3}>=\dfrac{1}{4}\)
=>\(2>=\dfrac{4}{sinx+3}>=1\)
=>\(-2< =-\dfrac{4}{sinx+3}< =-1\)
=>-2+3<=y<=-1+3
=>1<=y<=2
y=1 khi \(\dfrac{-4}{sinx+3}+3=1\)
=>\(\dfrac{-4}{sinx+3}=-2\)
=>sinx+3=2
=>sin x=-1
=>x=-pi/2+k2pi
y=3 khi sin x=1
=>x=pi/2+k2pi
b: -1<=cosx<=1
=>4>=-4cosx>=-4
=>9>=-4cosx+5>=1
=>2/9<=2/5-4cosx<=2
=>2/9<=y<=2
\(y_{min}=\dfrac{2}{9}\) khi \(\dfrac{2}{5-4cosx}=\dfrac{2}{9}\)
=>\(5-4\cdot cosx=9\)
=>4*cosx=4
=>cosx=1
=>x=k2pi
y max khi cosx=-1
=>x=pi+k2pi
c: \(0< =cos^2x< =1\)
=>\(0< =2\cdot cos^2x< =2\)
=>\(-1< =y< =2\)
y min=-1 khi cos^2x=0
=>x=pi/2+kpi
y max=2 khi cos^2x=1
=>sin^2x=0
=>x=kpi
1) Tìm giá trị nhỏ nhất của biểu thức:
\(A=3\left|2x-1\right|-5\)
\(B=x^2+3\left|y-2\right|+1\)
2) Tìm giá trị lớn nhất của biểu thức:
\(C=10-5\left|x-2\right|\)
\(D=5-\left(2x-1\right)^2\)
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
Tìm giá trị nhỏ nhất của hàm số y = \(\left|5-2x\right|=\left|4-2x\right|\)
Sửa `|5-2x|=|4-2x|->|5-2x|+|4-2x|`
Áp dụng tính chất `|P|>=P,|P|>=-P`
`=>{(|5-2x|>=5-2x),(|4-2x|>=2x-4):}`
`=>|5-2x|+|4-2x|>=5-2x+2x-4=1`
Dấu "=' xảy ra khi `{(5-2x>=0),(4-2x<=0):}`
`<=>{(2x<=5),(2x>=4):}`
`<=>2<=x<=5/2`