tim dieu kien cua x de a co nghia va rut gon a
Bai 1)Cho bieu thuc A=\(\frac{x+y-2\sqrt{xy}}{x-y}\)
a)Tim dieu kien de A co nghia
b)Rut gon A
c)Tinh A biet x=\(3+2\sqrt{2}\)va y=\(3-2\sqrt{2}\)
Bai 2) Cho bieu thuc B=\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
a)Tim dieu kien de B co nghia
b)Rut gon B
c) Tinh B voi x=\(4\left(2-\sqrt{3}\right)\)
d)Tim x de B co gia tri nho nhat
a) A có nghĩa\(\Leftrightarrow x-y\ne0\Leftrightarrow x\ne y\)
b) \(A=\frac{x+y-2\sqrt{xy}}{x-y}=\frac{\left(\sqrt{x-\sqrt{y}}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
cho 2 bieu thuc:
A=(\(\sqrt{20}\) -\(\sqrt{45}\) +3\(\sqrt{5}\) ).\(\sqrt{5}\) va B=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\) +\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\) (Dieu kien: x>0, x khac 1
a) Rut gon bieu thuc A va B
b)Tim cac gia tri cua x de gia tri cua bieu thuc A bang 2lan gia tri B
a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)
\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
b: A=2B
=>\(10=4\sqrt{x}-2\)
=>\(4\sqrt{x}=12\)
=>x=9(nhận)
cho 2 bieu thuc A=x+x^2/2-x va B=2x/x+1+3/x-2-2x^2+1/x^2-x-2 a, tinh gia tri cua A khi /2x-3/=1 b,tim dieu kien xac dinh va rut gon bieu thuc B c,tim so nguyen x de P=A.B dat gia tri lon nhat
mk dang can gap
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
Cho phan thuc B=(3\y+3)+(1\y-3)-(18\9-y2)
a)Tim dieu kien cua y de gia tri cua bieu thuc B duoc xac dinh
b)Rut gon bieu thuc B
c)Tinh gia tri cua B de B co gia tri nguyen
Cho bieu thuc A = ( 1/ x^2 - x + 1/x-1):x+1/x^2 -2x +1 ( x khac 0;1;-1)
a) Rut gon bieu thuc A
b) Tinh gia tri bieu thuc A khi x=2014/2013
c)Tim dieu kien cua x de A co gia tri lon hon 1
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Cho bieu thuc A=\(\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\div\dfrac{1}{\sqrt{x}-1}\)
a/ Tim dieu kien cua x de bieu thuc A co gia tri xac dinh
b/ Rut gon A
c/ Tinh gia tri cua A khi x = \(4-2\sqrt{3}\)
d/ Tim gia tri nho nhat cua A
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
Cho bieu thuc: ( x-1/ x+1 - x-1/x+1) : 2x / 3x - 3
a, Tim dieu kien xac dinh cua bieu thuc P
b, Rut gon bieu thuc P
c, Tim x thuoc z de P nhan gia tri nguyen.
Đề bài sai rồi bạn ! Mình sửa :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)
\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-6}{x+1}\)
c) Để P nhận giá trị nguyên
\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)
\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)
Ta loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
\(A=\dfrac{x+1}{x^2+x}\)
a, tim dieu kien xac dinh
b, rut gon A
`a, x^2 +x` \(\ne\) `0` \(\Leftrightarrow x\left(x+1\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
`b, A=(x+1)/(x^2+x) =(x+1)/(x(x+1))=1/x`
\(A=\dfrac{x+1}{x^2+x}\)
\(a,\) Điều kiện xác định: \(x^2+x\ne0\Leftrightarrow x\left(x+1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
\(b,A=\dfrac{x+1}{x^2+x}=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)
cho bieu thuc P= (\(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-3}\) ): \(\frac{1}{x-1}\)
a) Tim dieu kien de P co nghia, rut gon bieu thuc P.
b) Tim cac so tu nhien x de \(\frac{1}{P}\)la so tu nhien
c) Tinh gia tri cua P voi x= 4-\(2\sqrt{3}\)
Giup mk vs mk dang can gap