`a, x^2 +x` \(\ne\) `0` \(\Leftrightarrow x\left(x+1\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
`b, A=(x+1)/(x^2+x) =(x+1)/(x(x+1))=1/x`
\(A=\dfrac{x+1}{x^2+x}\)
\(a,\) Điều kiện xác định: \(x^2+x\ne0\Leftrightarrow x\left(x+1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
\(b,A=\dfrac{x+1}{x^2+x}=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)