Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đồ Ngốc
Xem chi tiết
OoO Min min OoO
Xem chi tiết
Akai Haruma
22 tháng 2 2018 lúc 0:51

Lời giải:

Từ \(a+b+c+ab+bc+ac=0\)

\(\Rightarrow a+b+c+ab+bc+ac+abc+1=1\)

\(\Leftrightarrow (a+1)(b+1)(c+1)=1\)

Đặt \(\left\{\begin{matrix} a+1=x\\ b+1=y\\ c+1=z\end{matrix}\right.\Rightarrow xyz=1\)

Biểu thức trở thành:

\(A=\frac{1}{(a+2)+a+b+ab+1}+\frac{1}{(b+2)+b+c+bc+1}+\frac{1}{(c+2)+c+a+ac+1}\)

\(A=\frac{1}{(a+2)+(a+1)(b+1)}+\frac{1}{(b+2)+(b+1)(c+1)}+\frac{1}{(c+2)+(c+1)(a+1)}\)

\(A=\frac{1}{x+1+xy}+\frac{1}{y+1+yz}+\frac{1}{z+1+zx}\)

\(A=\frac{z}{xz+z+xyz}+\frac{zx}{yxz+xz+yz.xz}+\frac{1}{z+1+xz}\)

hay \(A=\frac{z}{xz+z+1}+\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}\) (thay \(xyz=1\))

\(\Leftrightarrow A=\frac{z+xz+1}{xz+z+1}=1\)

Vậy \(A=1\)

Anna Vũ
Xem chi tiết
Lê Thảo Vy
Xem chi tiết
Nguyễn Quang Huy
15 tháng 10 2017 lúc 20:15

dễ ợt mày ngu thế

Phan Thúy An
Xem chi tiết
Phạm Xuân Trường
27 tháng 3 2016 lúc 11:40

bc+1/c = ca+1/c => bc + 1 = ca + 1 <=> bc = ca <=> b = a

minh chi lam đc 1 cai thoi

Hoàng Phúc
27 tháng 3 2016 lúc 16:08

tỉ số thứ 3 hình như sai thì phải

Pham Van Hung
Xem chi tiết
tth_new
21 tháng 1 2020 lúc 6:14

Ta có đẳng thức quen thuộc: \(\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=1\)

\(\Rightarrow\frac{\left(x+y\right)}{z}+\frac{\left(y+z\right)}{x}+\frac{\left(z+x\right)}{y}+2=\frac{\left(x+y\right)}{z}.\frac{\left(y+z\right)}{x}.\frac{\left(z+x\right)}{y}\)

Đặt \(\frac{x+y}{z}=a;\frac{y+z}{x}=b;\frac{z+x}{y}=c\) thì ta thu được giả thiết.

Vậy tồn tại các số x, y, z > 0 sao cho \(a=\frac{x+y}{z};b=\frac{y+z}{x};c=\frac{z+x}{y}\) 

BĐT quy về: \(\Sigma_{cyc}\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\le\frac{3}{2}\)

Áp dụng BĐT AM-GM: \(VT\le\frac{1}{2}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)=\frac{3}{2}\)

P/s: Em không chắc về cách trình bày ở chỗ phần đặt..., nhưng cách đặt trên luôn tồn tại đó!

Khách vãng lai đã xóa
tth_new
21 tháng 1 2020 lúc 18:11

Cách khác tự nhiên hơn!

\(a+b+c+2=abc\)

\(\Leftrightarrow\Sigma_{cyc}\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(z;x;y\right)\text{ thì }x+y+z=1\Rightarrow a=\frac{1-z}{z}=\frac{x+y}{z}\)

Tương tự: \(b=\frac{y+z}{x};c=\frac{z+x}{y}\). Rồi giải như bài ban nãy.

Khách vãng lai đã xóa
Ánh êu Mark GOT7
Xem chi tiết
Thắng Nguyễn
25 tháng 12 2016 lúc 18:55

Từ \(abc=1\Rightarrow a=\frac{1}{bc}\) thay vào ta có:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{\frac{1}{bc}}{\frac{1}{bc}\cdot b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{bc}\cdot c+c+1}\)

\(=\frac{1}{bc\left(\frac{1}{c}+\frac{1}{bc}+1\right)}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{b\left(\frac{1}{b}+c+1\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{1+b+bc}{bc+b+1}=1\)

Huy Nguyễn Đức
25 tháng 12 2016 lúc 19:38

a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)

=abc/(ab+a+1)bc+b/(bc+b+1)+bc/(ac+c+1)b

=1/(abcb+abc+bc)+b/(bc+b+1)+bc/(abc+bc+b)

=1/(bc+b+1)+b/(bc+b+1)+bc/(bc+b+1)

=(bc+b+1)/(bc+b+1)=1

Bé Thư Hoàng
Xem chi tiết
Dương Lam Hàng
12 tháng 2 2019 lúc 21:46

Ta có: \(ab+bc+ac=abc+a+b+c\)

\(\Leftrightarrow ab-abc+bc-b+ac-a-c=0\)

\(\Leftrightarrow ab-abc+bc-b+ac-a+1-c=1\)

\(\Leftrightarrow ab\left(1-c\right)+b\left(c-1\right)+a\left(c-1\right)+\left(1-c\right)=1\)

\(\Leftrightarrow ab\left(1-c\right)-b\left(1-c\right)-a\left(1-c\right)+\left(1-c\right)=1\)

\(\Leftrightarrow\left(1-c\right)\left(ab-b-a+1\right)=1\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=1\)

Ta có thể đặt x=1-a ; y=1-b; z=1-c => xyz=1

Nhưng trong đẳng thức cần chứng minh theo x;y;z

=> Thế: a=1-x; b=1-y; c=1-z vào được:

\(\frac{1}{3+ab-\left(2a+b\right)}=\frac{1}{3+\left(1-x\right)\left(1-y\right)-2\left(1-x\right)-\left(1-y\right)}=\frac{1}{1+x+xy}\)

Tương tự: \(\frac{1}{3+bc-\left(2b+c\right)}=\frac{1}{3+\left(1-y\right)\left(1-z\right)-2\left(1-y\right)-\left(1-z\right)}=\frac{1}{1+y+yz}\)

                  \(\frac{1}{3+ac-\left(2c+a\right)}=\frac{1}{3+\left(1-x\right)\left(1-z\right)-2\left(1-z\right)-\left(1-x\right)}=\frac{1}{1+z+zx}\)

Theo giả thiết xuz=1

=> \(VT=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

             \(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)

            \(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\)

            \(=\frac{1+x+xy}{1+x+xy}=1=VP\)

Kudo Shinichi
Xem chi tiết
Kudo Shinichi
6 tháng 7 2016 lúc 21:00

Trả lời hộ mình đi