CMR \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
giúp mình với mk cần gấp lắm
Cho \(0< a,b,c< 1\)và \(ab+bc+ac=1\). CMR:
\(\frac{a\left(b+c\right)}{1-a^2}+\frac{b\left(a+c\right)}{1-b^2}+\frac{c\left(a+b\right)}{1-c^2}\ge3\)
Mình cần gấp lắm, có ai giúp mình được không ạ
Cho biểu thức \(A=\frac{1}{3+2a+b+ab}+\frac{1}{3+2b+c+bc}+\frac{1}{3+2c+a+ac}\) .Biết \(a,b,c\) là các số thực làm cho $A$ xác định và \(ab+bc+ac+a+b+c+abc=0\).Tính gía trị của A.
Mn giúp mk với, mk đang cần gấp lắm sắp thi hsg rồi.
Lời giải:
Từ \(a+b+c+ab+bc+ac=0\)
\(\Rightarrow a+b+c+ab+bc+ac+abc+1=1\)
\(\Leftrightarrow (a+1)(b+1)(c+1)=1\)
Đặt \(\left\{\begin{matrix} a+1=x\\ b+1=y\\ c+1=z\end{matrix}\right.\Rightarrow xyz=1\)
Biểu thức trở thành:
\(A=\frac{1}{(a+2)+a+b+ab+1}+\frac{1}{(b+2)+b+c+bc+1}+\frac{1}{(c+2)+c+a+ac+1}\)
\(A=\frac{1}{(a+2)+(a+1)(b+1)}+\frac{1}{(b+2)+(b+1)(c+1)}+\frac{1}{(c+2)+(c+1)(a+1)}\)
\(A=\frac{1}{x+1+xy}+\frac{1}{y+1+yz}+\frac{1}{z+1+zx}\)
\(A=\frac{z}{xz+z+xyz}+\frac{zx}{yxz+xz+yz.xz}+\frac{1}{z+1+xz}\)
hay \(A=\frac{z}{xz+z+1}+\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}\) (thay \(xyz=1\))
\(\Leftrightarrow A=\frac{z+xz+1}{xz+z+1}=1\)
Vậy \(A=1\)
Cho tam giác ABC vuông tại A có AB=c, AC=b, đường phân giác AD=d.
CMR \(\frac{1}{b}+\frac{1}{c}=\frac{\sqrt{2}}{d}\)
Giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Mình cần rất gấp
cho a,b,c>0 thỏa mãn abc=1. CM:
\(\frac{a}{^{\left(ab+a+1\right)^2}}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\)\(\ge\frac{1}{a+b+c}\)
Giải giúp mình nha mình cần lắm
Cho abc khác + _ 1 và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{c}\) . CMR : a=b=c
Giups mình với nha , mình đang cần gấp !!!!!!!!!!
bc+1/c = ca+1/c => bc + 1 = ca + 1 <=> bc = ca <=> b = a
minh chi lam đc 1 cai thoi
Cho a;b;c > 0 và \(a+b+c+2=abc\)
CMR: \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\le\frac{3}{2}\)
Các bạn giúp mình nhé, mình cần gấp.
Ta có đẳng thức quen thuộc: \(\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=1\)
\(\Rightarrow\frac{\left(x+y\right)}{z}+\frac{\left(y+z\right)}{x}+\frac{\left(z+x\right)}{y}+2=\frac{\left(x+y\right)}{z}.\frac{\left(y+z\right)}{x}.\frac{\left(z+x\right)}{y}\)
Đặt \(\frac{x+y}{z}=a;\frac{y+z}{x}=b;\frac{z+x}{y}=c\) thì ta thu được giả thiết.
Vậy tồn tại các số x, y, z > 0 sao cho \(a=\frac{x+y}{z};b=\frac{y+z}{x};c=\frac{z+x}{y}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\le\frac{3}{2}\)
Áp dụng BĐT AM-GM: \(VT\le\frac{1}{2}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)=\frac{3}{2}\)
P/s: Em không chắc về cách trình bày ở chỗ phần đặt..., nhưng cách đặt trên luôn tồn tại đó!
Cách khác tự nhiên hơn!
\(a+b+c+2=abc\)
\(\Leftrightarrow\Sigma_{cyc}\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(z;x;y\right)\text{ thì }x+y+z=1\Rightarrow a=\frac{1-z}{z}=\frac{x+y}{z}\)
Tương tự: \(b=\frac{y+z}{x};c=\frac{z+x}{y}\). Rồi giải như bài ban nãy.
Cho abc = 1 CMR: \(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+ \(\frac{c}{ac+c+1}\)= 1
Giúp mình với :((( mình tích đúng cho
Từ \(abc=1\Rightarrow a=\frac{1}{bc}\) thay vào ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{\frac{1}{bc}}{\frac{1}{bc}\cdot b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{bc}\cdot c+c+1}\)
\(=\frac{1}{bc\left(\frac{1}{c}+\frac{1}{bc}+1\right)}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{b\left(\frac{1}{b}+c+1\right)}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1+b+bc}{bc+b+1}=1\)
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
=abc/(ab+a+1)bc+b/(bc+b+1)+bc/(ac+c+1)b
=1/(abcb+abc+bc)+b/(bc+b+1)+bc/(abc+bc+b)
=1/(bc+b+1)+b/(bc+b+1)+bc/(bc+b+1)
=(bc+b+1)/(bc+b+1)=1
Với a;b;c là những số thực thỏa mãn: ab+bc+ac=abc+a+b+c
với điều kiện \(3+ab\ne2;3+bc\ne2b+c;3+ac\ne2c+a\)
CMR: \(\frac{1}{3+ab-\left(2a+b\right)}+\frac{1}{3+bc-\left(2b+c\right)}+\frac{1}{3+ac-\left(2c+a\right)}=1\)
giúp mình với các bạn ơi
Ta có: \(ab+bc+ac=abc+a+b+c\)
\(\Leftrightarrow ab-abc+bc-b+ac-a-c=0\)
\(\Leftrightarrow ab-abc+bc-b+ac-a+1-c=1\)
\(\Leftrightarrow ab\left(1-c\right)+b\left(c-1\right)+a\left(c-1\right)+\left(1-c\right)=1\)
\(\Leftrightarrow ab\left(1-c\right)-b\left(1-c\right)-a\left(1-c\right)+\left(1-c\right)=1\)
\(\Leftrightarrow\left(1-c\right)\left(ab-b-a+1\right)=1\)
\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=1\)
Ta có thể đặt x=1-a ; y=1-b; z=1-c => xyz=1
Nhưng trong đẳng thức cần chứng minh theo x;y;z
=> Thế: a=1-x; b=1-y; c=1-z vào được:
\(\frac{1}{3+ab-\left(2a+b\right)}=\frac{1}{3+\left(1-x\right)\left(1-y\right)-2\left(1-x\right)-\left(1-y\right)}=\frac{1}{1+x+xy}\)
Tương tự: \(\frac{1}{3+bc-\left(2b+c\right)}=\frac{1}{3+\left(1-y\right)\left(1-z\right)-2\left(1-y\right)-\left(1-z\right)}=\frac{1}{1+y+yz}\)
\(\frac{1}{3+ac-\left(2c+a\right)}=\frac{1}{3+\left(1-x\right)\left(1-z\right)-2\left(1-z\right)-\left(1-x\right)}=\frac{1}{1+z+zx}\)
Theo giả thiết xuz=1
=> \(VT=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\)
\(=\frac{1+x+xy}{1+x+xy}=1=VP\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp