Lời giải:
Từ \(a+b+c+ab+bc+ac=0\)
\(\Rightarrow a+b+c+ab+bc+ac+abc+1=1\)
\(\Leftrightarrow (a+1)(b+1)(c+1)=1\)
Đặt \(\left\{\begin{matrix} a+1=x\\ b+1=y\\ c+1=z\end{matrix}\right.\Rightarrow xyz=1\)
Biểu thức trở thành:
\(A=\frac{1}{(a+2)+a+b+ab+1}+\frac{1}{(b+2)+b+c+bc+1}+\frac{1}{(c+2)+c+a+ac+1}\)
\(A=\frac{1}{(a+2)+(a+1)(b+1)}+\frac{1}{(b+2)+(b+1)(c+1)}+\frac{1}{(c+2)+(c+1)(a+1)}\)
\(A=\frac{1}{x+1+xy}+\frac{1}{y+1+yz}+\frac{1}{z+1+zx}\)
\(A=\frac{z}{xz+z+xyz}+\frac{zx}{yxz+xz+yz.xz}+\frac{1}{z+1+xz}\)
hay \(A=\frac{z}{xz+z+1}+\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}\) (thay \(xyz=1\))
\(\Leftrightarrow A=\frac{z+xz+1}{xz+z+1}=1\)
Vậy \(A=1\)
Đúng 0
Bình luận (3)