4n+5 chia hết n-2
1 tìm n ∈ N để
3n + 2 chia hết n-1
n^2 + 2n + 7 chia hết n +2
2 chứng minh rằng ∀ n ∈ N thì
2^4n+2 +1 chia hết 5
7 ^4n-1 chia hết 5
3^4n+1+2 chia hết 5
1)
a) Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow3n-3+5⋮n-1\)
mà \(3n-3⋮n-1\forall n\)
nên \(5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
mà n∈N
nên \(n\in\left\{0;2;6\right\}\)
Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)
b) Ta có: \(n^2+2n+7⋮n+2\)
\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
hay \(7⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(7\right)\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)
mà n∈N
nên n=5
Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)
2)
a) Ta có: \(2^{4n+2}+1\)
\(=2^{2\left(2n+1\right)}+1\)
\(=4^{2n+1}+1\)
Vì \(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)
nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N
hay \(2^{4n+2}+1⋮5\forall n\in N\)
cmr với mọi n thuộc N thì:
a) 2^(4n+1) + 3 chia hết cho 5
b) 2^(4n+2) + 1 chia hết cho 5
c) 9^(2n+1) + 1 chia hết cho 10
d) 7^(4n) - 1 chia hết cho 5
e) 3^(4n+1) + 2 chia hết cho 5
a) \(2^{4n+1}+3=2.2^{4n}+3=2.16^n+3\)
Do \(16^n\) có tận cùng luôn là 6 nên \(2.16^n\) có tận cùng là 2 => \(2^{4n+1}+3\) có tận cùng là 5 nên chia hết cho 5.
Chứng minh rằng vs mọi số tự nhiên n
a,7^4n -1 chia hết cho 5
b,2^4n+2 +1 chia hết cho 5
c,3^4n +2 chia hết cho 5
d,9^2n+1 +1 chia hết cho 10
e,2^4n+1 +3chia hết cho 5
chứng ninh với mọi số tự nhiên n :
a. 74n - 1 chia hết cho 5
b. 34n+1 + 2 chia hết cho 5
c. 24n+1 + 3 chia hết cho 5
d. 24n+2 + 1 chia hết cho 5
e. 92n+1 + 1 chia hết cho 10
a)\(7^{4n}-1\)
Ta có:\(7^{4n}-1\)=\(\left(7^4\right)^n-1=\left(...1\right)^n-1=\left(...1\right)-1=...0\)
Vì các số có tận cùng là 0 thì chia hết cho 5 do đó \(7^{4n}-1\)
chia hết cho 5(đpcm)
Các câu kia tương tự
n+6 chia hết cho n
4n+5 chia hết cho n
4n+5 chia hết cho n-1
4n-5 chia hết cho 2n-1
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Tìm số nguyên n sao cho :
a ) 4n - 5 : 2n -1
b) 2- 4n chia hết cho n-1
c) n^2 + 3n + 1 : n + 1
D) 3 n + 5 chia hết cho n -2
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)
vì n chẵn nên đặt n=2k
\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)
vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2
=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16
\(n^3+4n=n^3-4n+8n\)
đặt n=2k
=>\(8\left(k-1\right)k\left(k+1\right)+16k\)
mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
Tìm n để: A)2n - 1 chia hết cho n+1
b) 4n-1 chia hết cho 2n +1
c) 5-3n chia hết cho n-1
d)n^2 +3n+5 chia hết cho n+3
e)n^2+4n+3 chia hết cho n+4