Gọi (d) là đồ thị của ham số bậc nhất y=mx+m-m. Tìm m để (d) đi qua gốc tọa độ
Cho hàm số y = - x 3 + 3 x 2 + m (m là tham số) có đồ thị (C). Gọi A, B là các điểm cực trị của đồ thị (C). Khi đó, số giá trị của tham số m để diện tích tam giác OAB (O là gốc tọa độ) bằng 1 là:
A. 0
B. 2
C. 1
D. 3
cho hàm số y = 2x+2 có đồ thhij là (d) và hàm số y = -x-1 có đồ thị là (d1)
a, vẽ (d) và (d1) trên cùng 1 mặt phẳng tọa độ trên tọa độ giao điểm của (d) và (d1) bằng phép toán
b, cho hàm số y=(m^2-11) x+m-5 (m là hàm số) co đò thị là (d2).tìm m để đt (d2) cắt đt (d).tìm m dể đt (d2) song song với đường thẳng (d)
cho hàm số \(\left(M^2-4M+3\right).x^2+2x\) . Tìm M để đồ thị hàm số đi qua gốc tọa độ
cho hàm số bậc hất y=3x+2 có đồ thị (d)
a) vẽ đồ thị (d)
b) gọi A và B lần lượt là giao điểm của (d) với trục tung Oy và trục hoành Ox . Tìm tọa độ các điểm A,B. Tính chu vi và diện tích tam giác AOB
c)Tính góc tạo bởi đường thangr (d) và trục hoành Ox .
(Góc làm tròn đến phút, đơn vị đo trên các trục tọa độ là cm và làm tròng đến chữ số thập phân thứ hai)
Bài 6. Cho hàm số y = -2x + 3.
a) Vẽ đồ thị của hàm số trên.
b) Gọi A và B theo thứ tự là giao điểm của đồ thị với các trục Ox và Oy. Tính diện tích tam giác OAB (với O là gốc tọa độ và đơn vị trên các trục tọa độ là centimet ).
c) Tính độ dài đoạn AB
\(b,\text{PT giao Ox và Oy: }\\ y=0\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow A\left(\dfrac{3}{2};0\right)\Leftrightarrow OA=\dfrac{3}{2}\\ x=0\Leftrightarrow y=3\Leftrightarrow B\left(0;3\right)\Leftrightarrow OB=3\\ \Leftrightarrow S_{OAB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{3}{2}\cdot3=\dfrac{9}{4}\left(cm^2\right)\\ c,C_1:\text{Áp dụng Pytago: }AB=\sqrt{OA^2+OB^2}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\\ C_2:AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\sqrt{\left(\dfrac{3}{2}-0\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)
Bài 1: Biết đồ thị của hàm số là đường thẳng đi qua gốc tọa độ, hãy xác định hàm số trong mỗi trường hợp sau
a) Đi qua điểm A( 3; 2)
b) Có hệ số a bằng 2
c) Song song với đường thẳng y=3x+1
Bài 2: Cho đường thẳng y=(k+1)x+k (1)
a) Tìm k để (1) đi qua gốc tọa độ
b) Tìm k để (1) cắt truc tung tại điểm có tung độ bằng 1 trừ căn 2
c) Tìm k để (1) song song với đường thẳng y = ( căn 3 +1)x +3
Cho đường thẳng y= 2mx+3-m-x (d). Xác định m để :
a, Đường thẳng d đi qua gốc tọa độ
b, Đường thẳng d song song với đường thẳng 2y-x =5
c, Đường thẳng d tạo với Ox một góc nhọn
d, Đường thẳng d tạo với Ox một góc tù
e, Đường thẳng d cắt Ox tại điểm có hoành độ là 2
f, Đường thẳng d cắt đồ thị hàm số y=2x-3 tại một điểm có hoành độ là 2
g, Đường thẳng d cắt đồ thị hàm số y= -x+7 tại một điểm có tung độ y=4
h, Đường thẳng d đi qua giao điểm của 2 đường thẳng 2x-3y= -8 và y= -x+1
Cho hàm số bậc nhất y= (a+2)x-a+1 có đồ thị là đường thẳng (d) a) Tìm a để hàm số nghịch biến trên R; b) Tìm a để đường thẳng (d) đi qua điểm M(-1,-4)
Lời giải:
a. Để hàm số nghịch biến trên R thì:
$a+2<0$
$\Leftrightarrow a< -2$
b.
Để $(d)$ đi qua $M(-1;-4)$ thì:
$y_M=(a+2)x_M-a+1$
$\Leftrightarrow -4=(a+2)(-1)-a+1$
$\Leftrightarrow a=\frac{3}{2}$
Cho hàm số: y=(m-1)x+m (d)
a, Tìm m để hàm số đồng biến, nghịch biến
b, Tìm m để hàm số song song với trục hoành
c, Tìm m để đồ thị hàm số đi qua điểm A(-1;1)
d, Tìm m để đồ thị hàm số song song với đường thẳng có phương trrình: x-2y=1
e, Tìm m để đồ thị hàm số cắt trục hoành tại điểm A có hoành độ \(x=2-\frac{\sqrt{3}}{2}\)
f, Chứng minh rằng đường thẳng (d) luôn đi qua điểm cố định khi m thay đổi