tìm giá trị nhỏ nhất: A= 4x2_3x+1/4x+2012 (x>0)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất :
A=x2-4x+1B=-x2+13x+20121) \(A=x^2-4x+1\)
\(A=x^2-4x+4-3\)
\(A=\left(x^2-4x+4\right)-3\)
\(A=\left(x-2\right)^2-3\)
Ta có: \(\left(x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x
Vậy MIinA = -3 khi x = 2
2) \(B=-x^2+13x+2012\)
\(B=-x^2+13x-\frac{169}{4}+\frac{169}{4}+2012\)
\(B=-\left(x^2-13+\frac{169}{4}\right)+\left(\frac{169}{4}+2012\right)\)
\(B=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)
Ta có: \(\left(x-\frac{13}{2}\right)^2\ge0\) với mọi x
\(-\left(x-\frac{13}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Vây \(Max\left(B\right)=\frac{8217}{4}\) khi \(x=\frac{13}{2}\)
Cho x>0,y>0,x+y=2012
aTim giá trị lớn nhất của biểu thức B=2x^2+8xy+2y^2/x^2+2xy+y^2
b,Tìm giá trị nhỏ nhất của biểu thức C=(1+2012/x)^2+(1+2012/y)^2
a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006
Cho A=2012-1350:[999-(x-1)^2]. Tìm x thuộc N sao cho A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
quay ơi, mày ghi mỗi đáp số như thế thì thằng nào chẳng ghi đc
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của A : / x - 2012 / + / x - 1 /
Tìm các giá trị của x để A= |x^3-x|+|x^2-1|+2012 đạt giá trị nhỏ nhất
\(A=\left|x\left(x^2-1\right)\right|+\left|x^2-1\right|+2012\ge2012\)
Dấu "=" xảy ra khi \(x\left(x^2-1\right)=0;\text{ }x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=1\text{ hoặc }-1\)
Vậy GTNN của A là 2012 tại x = 1; x = -1.
Tìm giá trị nhỏ nhất của biểu thức
C = 2x^2 -4x + 2012
D = x^2 + 100x - 1000
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
cho biểu thức A\(=X^4-6X^3+18x^2-6xy+y^2+2012\)
tìm x,y để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$