Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Thùy Dương
Xem chi tiết
Nguyễn Đình Dũng
22 tháng 10 2016 lúc 7:10

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

Phạm Nguyễn Tất Đạt
22 tháng 10 2016 lúc 7:43

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

Phạm Nguyễn Tất Đạt
22 tháng 10 2016 lúc 7:47

b)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}=\frac{a^3}{b^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Phạm Hoàng Nam
Xem chi tiết
tống thị quỳnh
Xem chi tiết
vũ tiền châu
14 tháng 3 2018 lúc 21:21

ÁP dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)

Mà \(ab\le\frac{a^2+b^2}{2}\Rightarrow\frac{a^2+b^2}{c^2+ab}\ge\frac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}\)

Tương tự, ta có 

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge2\left(\frac{a^2+b^2}{a^2+c^2+b^2+c^2}+...\right)\)

Đặt \(\left(a^2+b^2;...\right)=\left(x;y;z\right)\)

Ta có VT\(\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+zx}+\frac{y^2}{ỹ+yz}+\frac{z^2}{zx+zy}\right)\)

=> \(VT\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)

=> \(A\ge\frac{9}{2}\left(ĐPCM\right)\)

Dấu = xảy ra <=> a=b=c>0

Phạm Thùy Linh
Xem chi tiết
Lightning Farron
22 tháng 10 2016 lúc 12:28

Câu 1:

Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

Lightning Farron
22 tháng 10 2016 lúc 12:49

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

Lightning Farron
22 tháng 10 2016 lúc 12:55

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)

Xét \(a+b+c=0\)\(\Rightarrow\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\)

\(\Rightarrow A=\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)

\(=\left(1-1-\frac{c}{b}\right)\left(1-1-\frac{a}{c}\right)\left(1-1-\frac{b}{a}\right)\)

\(=\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)=-1\)

Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a-b=b-c=c-a=0\Leftrightarrow a=b=c\)

\(\Leftrightarrow A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

 

Sakura Kinomoto
Xem chi tiết
Đinh Thùy Linh
8 tháng 6 2016 lúc 10:34

Câu3: Ký hiệu [a,b] và (a,b) là gì ? Bạn.

Đinh Thùy Linh
8 tháng 6 2016 lúc 10:40

Câu 1:

\(B=\frac{1}{199}+1+\frac{2}{198}+1+\frac{3}{197}+1+...+\frac{198}{2}+1+\frac{199}{1}+1-199\)

\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)

\(=200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)=200\cdot A\)

Vậy, \(\frac{A}{B}=\frac{1}{200}\).

Sakura Kinomoto
9 tháng 6 2016 lúc 8:05

Mình nghĩ  [a, b] là BCNN, còn (a, b) là ƯCLN

Dương Lam Hàng
Xem chi tiết
Hồ Thu Giang
16 tháng 6 2016 lúc 15:08

1, 

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

<=> (a - 2)(b + 3) = (a + 2)(b - 3)

<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6

<=> 3a - 2b = -3a + 2b

<=> 6a = 4b

<=> 3a = 2b 

<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)

Hồ Thu Giang
16 tháng 6 2016 lúc 15:12

2,

Có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)

\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)

=> bz - cy = 0

=> bz = cy

=> \(\frac{b}{y}=\frac{c}{z}\)(1)

=> cx - az = 0

=> cx = az

=> \(\frac{c}{z}=\frac{a}{x}\)(2)

Từ (1) và (2)

=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)

Trần Khánh Huyền
Xem chi tiết
nguyễn vũ kim anh
Xem chi tiết
T.Ps
8 tháng 7 2019 lúc 21:00

#)Giải : (Bài này ez mak :v)

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

\(\Rightarrow\left(a+2\right)\left(b-3\right)=\left(a-2\right)\left(b+3\right)\)(bước này mk làm tắt đi nhé)

\(\Rightarrow3a=2b\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\)

\(\Rightarrowđpcm\)

Edogawa Conan
8 tháng 7 2019 lúc 21:01

Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

=> \(\frac{\left(a-2\right)+4}{a-2}=\frac{\left(b-3\right)+6}{b-3}\)

=> \(1+\frac{4}{a-2}=1+\frac{6}{b-3}\)

=> \(\frac{4}{a-2}=\frac{6}{b-3}\)

=> \(4\left(b-3\right)=6\left(a-2\right)\)

=> \(4b-12=6a-12\)

=> \(4b=6a\)

=> \(2b=3a\)

=> \(\frac{b}{3}=\frac{a}{2}\)

Tiểu _ Vy _ Fa
8 tháng 7 2019 lúc 21:01

vội ???? chưa lm bài hay sao vậy tòi

Ánh trăng cô đơn
Xem chi tiết
Kirigazay Kazuto
30 tháng 9 2016 lúc 20:15

Vì \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=3 ==> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)=9= \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

ta có \(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)\(\frac{2\left(a+b+c\right)}{abc}\)=2

==> đpcm

VRCT_Ran Love Shinichi
30 tháng 9 2016 lúc 20:00

1/a +1/b +1/c =3 hay bằng 2