Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Law Trafargal
Xem chi tiết
Ngô Mạnh Tuân
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Nguyễn Thành Hưng
12 tháng 1 lúc 17:56

) Ta có: 

 

- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.

 

- MH vuông góc với BC nên ∠HMB = 90°.

 

- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.

 

 

 

Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.

 

 

 

b) Ta có:

 

- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.

 

- MH vuông góc với BC nên ∠HMB = 90°.

 

- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.

 

 

 

Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.

 

 

Vậy AK // HM.

 

 

 

c) Ta có:

 

- AK // HM (theo b).

 

- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.

 

- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.

 

- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.

 

 

 

Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.

 

 

 

Vậy HN // AM.

Cường Hoàng
Xem chi tiết
uwerieieiei
Xem chi tiết
uwerieieiei
10 tháng 9 2021 lúc 21:33

các bạn giúp mik với!!!!

Mary0000@gmail.com
Xem chi tiết
meme
Xem chi tiết

a: Ta có: BM//EF

EF\(\perp\)AH

Do đó: AH\(\perp\)BM

Xét ΔAMB có

AH là đường cao

AH là đường phân giác

Do đó: ΔAMB cân tại A

b: Xét ΔAFE có 

AH vừa là đường cao, vừa là đường phân giác

Do đó: ΔAFE cân tại A

=>AF=AE

Ta có: AF+FM=AM

AE+EB=AB

mà AF=AE và AM=AB

nên FM=EB

Xét ΔCMB có

D là trung điểm của CB

DF//MB

Do đó: F là trung điểm của CM

=>CF=FM

=>CF=FM=EB

Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Xem chi tiết
Kiều Vũ Linh
15 tháng 12 2023 lúc 7:57

Bài 2

loading...

Ta có:

∠N + ∠DMN + ∠MDN = 180⁰ (tổng các góc trong ∆MDN)

⇒ ∠NMD = 180⁰ - (∠N + ∠MDN) (1)

∠P + ∠MDP + ∠PMD = 180⁰ (tổng các góc trong ∆MDP)

⇒ ∠PMD = 180⁰ - (∠MDP + ∠P) (2)

Do MD là tia phân giác của ∠NMP (gt)

⇒ ∠NMD = ∠PMD (3)

Từ (1), (2) và (3) ⇒ ∠DMP + ∠P = ∠N + ∠DMN

⇒ ∠DMP - ∠DMN = ∠N - ∠P

Kiều Vũ Linh
15 tháng 12 2023 lúc 7:40

Bài 1

loading... a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆ABM và ∆ACM có:

AM là cạnh chung

AB = AC (gt)

MB = MC (cmt)

⇒ ∆ABM = ∆ACM (c-c-c)

b) Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

Mà BD ⊥ BC (gt)

⇒ BD // AM

c) Do ∆ABM = ∆ACM (cmt)

⇒ ∠BAM = ∠CAM (hai góc tương ứng)

Do BD // AM (cmt)

⇒ ∠ADB = ∠CAM (đồng vị)

∠ABD = ∠BAM (so le trong)

Mà ∠BAM = ∠CAM (cmt)

⇒ ∠ABD = ∠ADB

Vũ Thảo Vy
Xem chi tiết
Nhân Thiện Hoàng
10 tháng 2 2018 lúc 21:27

kho ua