tìm x biết
a/\(2^x+2^{x+3}=288\)
b/\(\left(2x-1\right)^3=-27\)
bài 1: phân tích đa thức thành nhân tử
a,2x+10y
b,x\(^2+4x+4\)
c,\(x^2-y^2+10y-25\)
bài 2 tìm x, biết
a,\(x^2-3x+x-3=0\)
b,\(2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\)
c,\(x^2-\left(x-3\right)\left(2x-5\right)=9\)
\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)
\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)
Tìm x,biết
a)\(\left(x-2^2\right)-1=0\)
b)\(4-\left(x-2\right)^2=0\)
c)\(x^2-9-\dfrac{8}{9}x^2=0\)
d)\(\left(3x-2\right)^2-\left(2x+3\right)^2=5\left(x+4\right)\left(x-4\right)\)
a. (x - 22) - 1 = 0
<=> x - 4 - 1 = 0
<=> x = 5
b. 4 - (x - 2)2 = 0
<=> 22 - (x - 2)2 = 0
<=> (2 - x + 2)(2 + x - 2) = 0
<=> x(4 - x) = 0
<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)
<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)
<=> (x - 5)(5x + 1) = 5x2 - 80
<=> 5x2 + x - 25x - 5 = 5x2 - 80
<=> 5x2 - 5x2 + x - 25x = -80 + 5
<=> -24x = -75
<=> x = \(\dfrac{25}{8}\)
a)\(\left(x-2^2\right)-1=0\Rightarrow x-4-1=0\Rightarrow x=5\)
bài 1: tìm đa thức M biết
a, \(M+x^2\)\(-3xy-y^2\)=\(2x^2\) \(-y^2+xy\)
b,\(x^2y^2-2x^2y^3+2x^2-y^3-P=x^2y^3-3x^2y^2-x^2\)
bài 2: tìm nghiệm của các đa thức sau
a, \(5\left(x-2\right)-2\left(x+3\right)\)
b, \(5x^2-125\)
c,\(2x^2-x-3\)
giúp mik vs ạ
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
tìm số nguyên x biết
a, 2x+1/3=x-5/2 b, 4(x-2) ^2/3=12
25/30=2x+3/6 -7/x+1=6/x+27
a: =>2x-x=-5/2-1/3
=>x=-17/6
b: =>4(x-2)2=36
=>(x-2)2=9
=>x-2=3 hoặc x-2=-3
hay x=5 hoặc x=-1
c: =>2x+1/2=5/6
=>2x=1/3
hay x=1/6
a: =>2x-x=-5/2-1/3
=>x=-17/6
b: =>4(x-2)2=36
=>(x-2)2=9
=>x-2=3 hoặc x-2=-3
hay x=5 hoặc x=-1
c: =>2x+1/2=5/6
=>2x=1/3
hay x=1/6
1 phân tích đa thức thành nhân tử
a,\(3x^2-6xy+3y^2\)
b,\(\left(x-y\right)^2-4x^2\)
2.tìm x biết
a,2x(x-3)-x+3=0
b,\(x^2+5x+6=0\)
`1)`
`a)3x^2-6xy+3y^2=3(x^2-2xy+y^2)=3(x-y)^2`
`b)(x-y)^2-4x^2=(x-y-2x)(x-y+2x)=(-x-y)(3x-y)`
`2)`
`a)2x(x-3)-x+3=0`
`<=>2x(x-3)-(x-3)=0`
`<=>(x-3)(2x-1)=0`
`<=>[(x=3),(x=1/2):}`
`b)x^2+5x+6=0`
`<=>x^2+2x+3x+6=0`
`<=>(x+2)(x+3)=0`
`<=>[(x=-2),(x=-3):}`
tìm x thuộc n biết
A. 3\(^x\)=81x3
b.2\(^{x+1}\)=32
c. 3\(^{x+2}\):27=3
d. 2x2=32
e. (2x-1)4=81
f. (2x-6)4=0
a: =>3^x=3^4*3=3^5
=>x=5
b: =>\(2^{x+1}=2^5\)
=>x+1=5
=>x=4
c: \(\Leftrightarrow3^{x+2-3}=3\)
=>x-1=1
=>x=2
d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)
=>x=4 hoặc x=-4
e: (2x-1)^4=81
=>2x-1=3 hoặc 2x-1=-3
=>2x=4 hoặc 2x=-2
=>x=-1 hoặc x=2
f: (2x-6)^4=0
=>2x-6=0
=>x-3=0
=>x=3
a) \(3^x=81\cdot3\)
\(\Rightarrow3^x=3^4\cdot3\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
b) \(2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
c) \(3^{x+2}:27=3\)
\(\Rightarrow3^{x+2}:3^3=3\)
\(\Rightarrow3^{x+2-3}=3\)
\(\Rightarrow3^{x-1}=3\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
d) \(2x^2=32\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
e) \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
f) \(\left(2x-6\right)^4=0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=6:2\)
\(\Rightarrow x=3\)
\(a,3^x=81\cdot3\\ \Leftrightarrow3^x=3^4\cdot3\\ \Leftrightarrow3^x=3^5\\ \Leftrightarrow x=5\\ d,2^{x+1}=32\\ \Leftrightarrow x+1=5\\ \Leftrightarrow x=4\\ c,3^{x+2}:27=3\\ \Leftrightarrow3^{x+2}:3^3=3\\ \Leftrightarrow3^{x-1}=3\\ \Leftrightarrow x-1=1\\ \Leftrightarrow x=2\\ d,2x^2=32\\ \Leftrightarrow x^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\\ e,\left(2x-1\right)^4=81\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ f,\left(2x-6\right)^4=0\\ \Leftrightarrow2x-6=0\\ \Leftrightarrow x=3\)
2) tìm x biết
a) \(\left(\dfrac{-3}{4}x+1\right):\dfrac{2}{3}=1\)
b) (x+3)=6
\(\left(-\dfrac{3}{4}x+1\right)\div\dfrac{2}{3}=1\)
\(-\dfrac{3}{4}x+1=1\times\dfrac{2}{3}\)
\(-\dfrac{3}{4}x+1=\dfrac{2}{3}\)
\(-\dfrac{3}{4}x=\dfrac{2}{3}-1\)
\(-\dfrac{3}{4}x=-\dfrac{1}{3}\)
\(x=-\dfrac{1}{3}\div\left(-\dfrac{3}{4}\right)\)
\(x=\dfrac{4}{9}\)
x+3=6
x=6-3
x=3
Tìm x:
\(a\)) \(\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(b\)) \(\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{27}{8}\right)^3=\dfrac{81}{16}\)
\(c\)) \(\dfrac{1}{2}.2^x+4.2^x=9.2^5\)
\(d\)) \(\text{12 - (2x +1)}^2=-69\)
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
\(a,\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}-\dfrac{2}{3}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\)
\(x=\dfrac{1}{2}+\dfrac{1}{3}\)
\(x=\dfrac{1}{5}\)
Tìm x để B=3A,biếtA=\(\left(\frac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}+\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)\) /\(\left(\frac{1}{2\sqrt{5}+3\sqrt{2}}-\frac{1}{2\sqrt{5}-3\sqrt{2}}\right)\)
B=\(\frac{2x^4-x^3+2x^2+x-4}{2x^3-x^2-2x+1}\)